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This document introduces the theory underlying Vortex Software’s 
multibody dynamics engine. The goal is to provide you with 

information that will guide you toward good modeling decisions. 
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1 INTRODUCTION 
In the last decades, interactive, physics-based simulation has become an established tool in the industry 
for the purposes of mission planning, operator training, and product design. Applications range from 
control familiarisation, increase in operator efficiency, and preparation for unforeseen circumstances, to 
virtual human-in-the-loop product design and development.  
Only physically based modeling approaches can tackle the challenges involved in many related 
simulation scenarios, and accurately capture the complexities of interactions between machines and 
their environment.  
Vortex Software’s unique mix of accuracy, stability, and speed makes it an effective and reliable tool for 
the creation of high-fidelity, interactive, physics-based simulations. 
The purpose of this document is to introduce you to the theory that underlies the Vortex multibody 
dynamics engine. A basic understanding of the methods used can help you make good modeling 
decisions, and choose simulation parameters that will lead to faster and more reliable simulations.  
In Section 2, Vortex Software’s multibody dynamics formulation is derived, starting with the 
introduction of rigid bodies and the Newton-Euler equations of motion. We introduce you to a modular 
constraint-based modeling that allows creation of complex machinery interacting with its environment. 
The characteristics of unilateral contacts with friction are formulated as a linear complementarity 
problem (LCP), and we’ll discuss efficient solution techniques. 
Sections 3, 4, and 5 focus on a series of Vortex Software modules that facilitate the creation of hoisting 
systems, flexible cables, vehicles, and earth-moving equipment interacting with deformable soil.  
We’ll conclude with Section 6, which provides details on the simulation of Vortex Software rigid bodies 
immersed in fluids.  
Throughout this document we’ll show how Vortex Software modules make use of the modeling 
framework presented in Section 2 to create a fully coupled physical environment.  
It will become clear that through the use of rigid bodies and constraints, complex behaviour naturally 
emerges from the simulation, and leads to realistic physical interactions between all simulated entities. 
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2 MULTIBODY DYNAMICS SIMULATION 
All Vortex Software simulations involve a set of rigid bodies and constraints. The rigid bodies represent 
the moving components of a mechanism, such as the wheels in a vehicle or the segments in a robotic 
arm. Constraints (or joints) create restrictions in the relative motion of a subset of the rigid bodies. For 
example, a hinge will restrict the relative motion between two bodies to a rotation around a single axis, 
as in the hinge of a door.  
Even the most complex mechanisms simulated with Vortex Software, including wheeled or tracked 
vehicles (with or without attached hoisting or earth-moving equipment) are modeled at the core as sets 
of constrained rigid bodies. Vortex Software modules, which will be presented in sections 3, 4, and 5, 
provide out-of-the-box capabilities for the simulation and modeling of cables, vehicles, and digging tools 
by pre-assembling rigid bodies with specialised constraints, all of which are processed by the Vortex 
Software simulation engine. 
In Vortex Software, a simulation is advanced in a series of discrete time steps. A single time step is 
organised into several work stages which are processed in sequence. The workflow is shown in Figure 1. 

 
Figure 1. Simulation loop 

Application 
Processing 

Stage 1: Collision Detection 

Stage 2: Partitioner 

Stage 3: Constraint Solver 
For partitions (in parallel): Solve for 

constraint forces and body velocities 

Stage 4: Integrator 
For partitions (in parallel): Move bodies 

Advance Simulation Time 

Contact Constraints 

Partitions 

Rigid Bodies 

Constraints 



 Theory Guide: Vortex Software’s Multibody Dynamics Engine 

  
. . 
. 

. 

. . 
 

5 
 

Stage 1: Collision Detection 
In the course of a simulation, rigid bodies can move and consequently collide. In order to model the 
physical interactions between colliding rigid bodies, contact constraints are automatically generated and 
added to the simulation. This is done during Stage 1 of every simulation step, the collision detection 
stage. 
For the purpose of detecting collisions, a rigid body comes with a set of attached collision geometries 
[1], such as primitives or triangle meshes, which define the body’s shape. Overlaps of collision 
geometries are detected, as well as spatial intersection information, such as exact touching locations 
and penetration depths or overlap volumes. An example is shown in Figure 2. This information is then 
used to set up contact constraints that model the physical nature of the rigid body collision via non-
penetration and friction conditions detailed in the Modeling Contacts and Friction section of this guide. 
A naive approach for identifying all intersections between a set of 𝑛 collision geometries is to perform 
intersection tests between any geometry and the remaining 𝑛 − 1 geometries. The computational 
complexity of this approach is 𝑂(𝑛ϵ), which makes it unsuitable even for moderate numbers of collision 
geometries.  
In Vortex Software’s multibody dynamics engine, a more efficient approach greatly reduces the 
computational complexity. The collision detection algorithm proceeds by performing a series of overlap 
tests, beginning with fast, efficient, approximate overlap tests on bounding volumes of the collision 
geometries, followed by progressively more accurate and less conservative tests. As a result of this 
process, a small set of potentially overlapping pairs of collision geometries is identified. Exact 
intersection tests are performed only for these pairs, which significantly reduces the computational 
effort compared to the brute force approach outlined above. For more information on this approach, 
see [2]. 
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Figure 2. Collision: Simple example of a primitive cylinder (which could represent a wheel of a vehicle), colliding with a planar surface. Depending on the configuration, one or two contact points are generated in the collision detection, with contact normals as indicated. 
 

 
Stage 2: Partitioner 
All constraints (user-created as well as auto-generated contact constraints) are ultimately processed by 
the constraint solver (Stage 3 in Figure 1), which computes the forces and torques applied by the 
constraints on their respective rigid bodies.  
In preparation for this stage, the partitioner (Stage 2) organises the set of rigid bodies into multiple 
subsets — so-called partitions. Every partition contains a subset of the rigid bodies together with their 
related joints. Partitions are automatically computed. Groups of rigid bodies that are entirely isolated 
from the rest (meaning that they affect only each other via constraints) are placed into separate 
partitions.  
As an example, consider two cars driving at different locations on a street. The rigid bodies of each car 
are constrained relative to each other via joints (e.g., the attachment of the wheels on the chassis), or 
are colliding with the street (e.g., the wheels). But the cars do not collide with each other and are also in 
no other way linked together. Therefore the subset of rigid bodies of each car will be organised into 
separate, isolated partitions. 
A single constraint can connect rigid bodies in a single partition, or across different partitions. In the 
latter case, the respective partitions are coupled. Partitions that are not coupled (meaning that there is 
no constraint that connects a rigid body in those partitions to a rigid body in any other partition, as is the 
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case in the car example) represent independent simulation problems, and will be processed in parallel in 
the next stage.  
Partitions that are coupled (meaning that there exists a constraint connecting them to another 
partition), will affect each other in simulation. In the car example, this would occur if the vehicles 
collided, in which case a contact constraint would be created. Based on the configuration of the 
partitioner and the desired simulation quality and speed, the partitions of the colliding cars could now 
be combined into a single, larger partition. They could alternatively be kept separate but considered as 
coupled partitions. In the latter case, the force exchange between the two cars would be handled in the 
following stage. 
 
Stages 3 and 4: Constraint Solver and Integrator 
The constraint solver (Stage 3) receives the partitions, and processes them to compute the forces 
applied by the constraints involved. Isolated, uncoupled partitions represent independent and data-
parallel problems, which are processed in parallel. This greatly reduces the time consumption in the 
constraint solver. 
The forces exchanged at the interaction boundaries of coupled partitions are computed in an iterative 
way. In this approach, coupled partitions are initially solved isolated and in parallel, and interaction 
forces are computed. The interaction forces are applied to the rigid bodies at the interaction boundaries 
followed by another solve. This procedure is repeated iteratively a given number of times. Once the 
constraint forces are computed, the rigid bodies can be moved to their new respective locations at the 
end of the current simulation step. This is done during Stage 4 for each partition in parallel. 
It should be noted that multiple hooks into the presented simulation loop are provided. Among others, a 
client application can receive collision notifications during the collision detection stage, or obtain access 
to the simulation data passed to the constraint solver [3]. As such, a simulation created using Vortex 
Software can be highly customised and tailored to the client’s needs, for example with specialised 
collision handling or custom constraint implementations [3]. All Vortex Software modules (i.e., 
Earthwork Systems, Vehicle Systems, and Cable Systems modules) make heavy use of this technology. 
In the following sections, Stages 3 and 4 are investigated in more detail. The constraint solver and its 
theoretical basis are presented, starting with an exploration of the motion of rigid bodies and the 
introduction of constraints. Later, the developed constraint framework is applied to the modeling of 
unilateral contacts with friction. 
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2.1 Dynamics of Rigid Bodies 
The Newton-Euler equations from classical mechanics describe the dynamics of a rigid body, and were 
derived by Euler as an extension of Newton’s second law, by viewing a rigid body as a set of 
infinitesimally small point masses [4]. Accordingly, the net force and torque, 𝐅 and 𝛕, applied on a single 
rigid body moving with linear and angular velocities 𝐯 and 𝛚 respectively and undergoing linear and 
angular accelerations �̇� and �̇�, is defined by the following ordinary differential equations: 
 

 𝐅 = 𝑚�̇� 
𝛕 = 𝐈 �̇� + 𝛚 × 𝐈𝛚 

(1) 
 
Here, 𝑚 defines the scalar mass of the body and 𝐈 its inertia tensor. All quantities are specified with 
respect to the inertial frame of reference, which is a fixed and global coordinate frame. 
By introducing the 6 × 1 generalised velocity vector 𝐮ք

յ = [𝐯ք
յ 𝛚ք

յ ] for rigid body 𝑖, and collecting the 
generalised velocities for a set of 𝑛 rigid bodies in the 6𝑛 × 1 vector 𝐮, the above equations can be 
assembled in matrix form as 

 𝐌�̇� = 𝐠  
(2) 

 
where 𝐌 is the 6𝑛 × 6𝑛 block-diagonal mass matrix with 6 × 6 block elements 𝐌ք containing the mass 
properties of the 𝑖th rigid body as shown below: 
 

 
𝐌 =

⎣

⎢⎢
⎡
𝐌φ 𝟎 … 0

0
⋮

⋱
⋮
0

0 … 0 𝐌։⎦

⎥⎥
⎤

, 𝐌ք = ঝ
𝑚ք𝟏ϯ×ϯ 0

0 𝐈ք

ঞ 

 

(3) 

 
The 6𝑛 × 1 vector 𝐠 is the vector of generalised forces and consists of the net load and the gyroscopic 
moment for all rigid bodies: 
 

 𝐠յ = [… 𝐅ք
յ , (𝝉ք − 𝛚ք × 𝐈ք𝛚ք)

յ …] 
  

(4) 
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In the inertial frame of reference, the quantities 𝐌 and 𝐠 are time-varying and depend on the current 
configuration of the rigid bodies, and, in the case of 𝐠, also on the current angular velocities, as can be 
seen in equation (4). 

 
Figure 3. A system of three articulated bodies connected by a hinge and a prismatic joint. 

 
2.2 Constraints 

We introduce constraints to equation (2) in order to model interactions between individual rigid bodies, 
such as mechanical joint articulations and contacts. An example of an articulated assembly of rigid 
bodies is shown in Figure 3. The rigid bodies are connected by joints that restrict their ability to move 
relative to each other. The figure depicts a simplified hydraulic cylinder which is modeled by a prismatic 
joint (or slider) that permits one linear degree of freedom (DOF). The cylinder is attached to the ground 
using a hinge joint with one angular DOF.  
Joints, such as the prismatic or hinge joint, are modeled using constraints. The number of constraints 
required to model a particular joint depends on the restrictions the joint applies on the positions and 
orientations of the involved rigid bodies relative to each other. As an example, consider a two-body 
joint. Relative to each other, two bodies have six degrees of freedom: Three linear and three angular. A 
hinge or prismatic joint permits only one degree of freedom, as shown in Figure 3, which means that five 
constraints are required to represent these joint types. 
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Constraints are equalities or inequalities of scalar functions 𝜙 restricting the motion of two or more rigid 
bodies relative to each other, and have the following form: 

 𝜙ि𝐪օȯ
, 𝐮օȯ

,… , 𝐪օՐ
, 𝐮օՐ

, 𝑡ी = 0 
𝜙ि𝐪օȯ

, 𝐮օȯ
,… , 𝐪օՐ

, 𝐮օՐ
, 𝑡ी ≥ 0 

(5) 
 
where 𝑗ք ∈ {1,… , 𝑛} denote the indices of the 𝑘 constrained bodies and 𝐪օՎ

 their respective 
generalised position. 
The generalised position 𝐪ք provides the position and orientation of the 𝑖th rigid body in the system. It is 
related to the body’s generalised velocity 𝐮ք through the expression 

 𝐪ք̇ = 𝐇(𝐪ք)𝐮ք  
(6) 

 
The matrix 𝐇(𝐪ք) is called the kinematic map and has the following form: 

 
𝐇(𝐪ք) = ঝ

𝟏ϯ×ϯ 𝟎

𝟎 𝐆(𝐪ք)
ঞ (7) 

 
The term 𝐆(𝐪ք) is dependent on the generalised positions and the choice of coordinates. A common 
way to represent the coordinates of a rigid body is to use a 3 × 1 position vector 𝐱ք together with a 
quaternion 𝑄ք, represented as 4 × 1 vector, defining the body’s orientation. This would make the 
generalised position 𝐪ք

յ = [𝐱ք
յ 𝑄ք

յ ] a 7 × 1 vector and the term 𝐆(𝐪ք) a 4 × 3 matrix.  
It should be noted that equality and inequality constraints are also commonly referred to as bilateral 
and unilateral constraints, respectively. As indicated above, a constraint can be dependent on time 𝑡, 
which is for example true for motorised constraints. Combining the Newton-Euler equations from 
equation (2) with a set of constraints yields a system of differential algebraic equations. 
Constraints can be classified into holonomic and nonholonomic constraints. The latter class is comprised 
of all inequality constraints together with those equality constraints which are not integrable, meaning 
that derivatives of the generalised positions cannot be eliminated from the equation. Constraints can 
also contain higher-order derivatives of the generalised positions, e.g., acceleration terms. But since 
Vortex Software uses a velocity-based and not an acceleration-based formulation, they are not 
considered here. 
An example of an inequality constraint is a unilateral contact. Contacts between rigid bodies are 
computed in the collision detection phase at the beginning of every time step, and are included in the 
simulation as contact constraints. Contact constraints will be discussed in more detail in the Modeling 
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Contacts and Friction section of this guide. The collision detection is responsible for detecting 
intersections between rigid bodies and producing a set of contact points representing the nature of the 
overlap between the bodies’ geometries. The number of calculated contacts can range from one, in the 
simple case of two colliding spheres, up to any number, e.g., for intersecting meshes, based on the 
requested contact count and other contact discretisation settings [3]. 
During simulation, all constraints are enforced by the constraint solver. For example, under the 
assumption that at the current time the constraint 𝜙 = 0 is satisfied, we know that the constraint will 
not be violated in the future if the time-derivative 𝜙 ̇ = 0 is maintained. Consequently, for a holonomic 
constraint of the form 𝜙(𝐪) = 0, where 𝐪յ = ॅ𝐪օȯ

յ , ⋯ , 𝐪օՐ

յ ॆ, a kinematic constraint condition can be 
derived via differentiation with respect to time: 

 𝑑

𝑑𝑡
𝜙(𝐪) =

𝜕𝜙

𝜕𝐪

𝑑𝐪

𝑑𝑡
=

𝜕𝜙

𝜕𝐪
𝐇(𝐪)

়
ᆩخ

𝐮 = 𝐉ᇓ𝐮 = 0 (8) 

 
The row-vector 𝐉ቾ denotes the constraint Jacobian and is related to the spatial derivative of the 
generalised position constraint 𝜙(𝐪) as shown above. The term 𝐇(𝐪) is a block-diagonal matrix with 
block-elements 𝐇(𝐪քՏ

) defined in equation (7), one block per constrained rigid body. From D’Alembert’s 
principle it follows that the generalised impulse, 𝐏ᇓ, applied by a constraint 𝜙 on the constrained 
bodies, corresponds [5] to 

 𝐏ᇓ = 𝐉ᇓ
յ 𝜆ᇓ 

 
(9) 

 
where the scalar 𝜆ᇓ denotes a Lagrange multiplier. In this context, the Lagrange multiplier represents 
the impulse in constraint space. 
The following section will demonstrate how to use equation (9) to incorporate constraint impulses into 
the equations of motion, and how the kinematic constraint condition given in equation (8) is used to 
maintain constraints in the Vortex Software time stepper. 
 

2.3 Discretisation of the Equations of Motion 
In this section, we will discretise the equations of motion from equation (2) and derive a time-stepping 
scheme which approximates the evolution of the generalised velocities and positions of a system of 
constrained rigid bodies. We choose a discrete time step Δ𝑡 and approximate �̇� = 𝑑𝐮/𝑑𝑡 using 
backward Euler as �̇� ≈ (𝐮+ − 𝐮−)/Δ𝑡,  where − denotes the beginning of the current time step and + 
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denotes its end. This way a discretised version of equation (2) can be derived leading to the following 
expression: 

 
𝐌

(𝐮+ − 𝐮−)

Δ𝑡
= 𝐠 

⇔       𝐌𝐮+ = Δ𝑡𝐠 + 𝐌𝐮− 
 

(10) 

The kinematic mapping from equation (6) can be discretised in an analogous way: 
 

 𝐪+ = 𝐪− + Δ𝑡𝐇(𝐪−)𝐮+ (11) 
 
The term 𝐇(𝐪−) is the generalised kinematic map, evaluated with respect to the generalised positions, 
𝐪−, at the beginning of the current time step. It is defined analogously to 𝐇(𝐪) from equation (7). By 
choosing 𝐮+ in the equation above, the generalised position update becomes implicit with respect to 
the generalised velocity, which has been shown to produce more stable results than a fully explicit 
update. 
Finally we add the constraint impulses from equation (9) to the discrete-time Newton-Euler equations in 
equation (10) and incorporate the kinematic constraint condition from equation (8) derived in the 
previous section. In matrix form, this yields the following Karush-Kuhn-Tucker (KKT) system: 
 

 
ই𝐌 −𝐉յ

𝐉 𝟎
ঈ ই

𝐮+

𝝀
ঈ = ই

Δ𝑡𝐠 + 𝐌𝐮−

𝐯Ј
ঈ 

 
(12) 

 
The term J assembles all individual constraint Jacobian vectors 𝐉ᇓ in a single 𝑘 × 6𝑛 matrix where 𝑘 is 
the total number of constraints and 𝑛 the total number of rigid bodies. 
For equation (12) to represent a linear system, all equations must be linear with respect to the sought 
generalised positions and velocities, 𝐪+ and 𝐮+, from the next time step [6]. This is the case if the time-
varying terms 𝐌, 𝐉 and 𝐠 are all evaluated at the beginning of the current time step, i.e., with respect 
to 𝐪+ and 𝐮−, which we will assume here. 
In the above system we introduced a target velocity term 𝑣ЈӴᇓ for every constraint in the kinematic 
constraint condition, and assembled in the 𝑘 × 1 vector 𝐯Ј. Essentially, the target velocity allows the 
inducing of relative motion between two or more bodies. Among other things, this enables the modeling 
of time-dependent constraints such as motors. It can also be used to simulate other, more complex 
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kinematic relations between multiple bodies, such as differential gears, which comes in handy when 
modeling, e.g., vehicle transmissions (see the Vehicle Systems section of this guide). 
As shown in equation (11), the generalised positions at the end of the current time step, 𝐪+, are 
computed implicitly based on the updated velocities 𝐮+. The generalised velocities 𝐮+ are computed 
explicitly if the quantities 𝐌, 𝐉 and 𝐠 are evaluated at the beginning of the current time step, and 
implicitly if they are evaluated at the end of the current time step. In Vortex Software’s multibody 
dynamics engine the latter approach is taken, which makes the presented time-stepping scheme semi-
implicit. Moreover, it can be shown that the integrator is also symplectic. 
 

2.4 Stabilisation and Relaxation 
As shown in a previous section, in the Vortex Software integrator, constraints are enforced at the 
velocity level. Consequently, in a discretised system, constraint drift can arise at the position level. In 
order to prevent this drift, we apply constraint stabilisation based on the method from Baumgarte [7]. 
Accordingly, the constraint condition in equation (12) is modified and, for a single, holonomic and time-
independent constraint 𝜙, takes the form 

 
𝐉ᇓ𝐮+ + 𝜀ᇓ𝜆ᇓ = 𝑣ЈӴᇓ − 𝛾ᇓ

𝜙(𝐪−)

Δ𝑡
 (13) 

 
In the expression above, the term 𝑣ЈӴᇓ denotes the scalar target velocity for the constraint 𝜙. The scalars 
𝜀ᇓ and 𝛾ᇓ are the stabilisation parameters which are used to mix the constraint impulses 𝜆ᇓ into the 
constraint function and account for the current scalar constraint violation 𝜙(𝐪−), respectively. As can be 
observed in the equation above, the stabilisation parameters offset the kinematic constraint condition 
which allows us to induce or counteract certain effects, such as positional drift. For more details, see [5]. 
The positional constraint correction term 𝜙(𝐪−) in equation (13) emerges from the Taylor series 
expansion of 𝜙(𝐪) around 𝐪−. After truncating any higher-order terms, this yields the approximation 

 
𝜙(𝐪+) ≈ 𝜙(𝐪−) +

𝜕𝜙

𝜕𝐪
Δ𝐪

= 𝜙(𝐪−) + 𝐉ᇓ𝐮+Δ𝑡 
 

(14) 

 
where Δ𝐪 = Δ𝑡 𝐇(𝐪−)𝐮+ according to (11). 
Replacing the left-hand side of the constraint 𝜙(𝐪+) = 0 by the approximation above and considering 
equations (8) and (11), we obtain the expression 
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 𝜙(𝐪−) + 𝐉ᇓ𝐮+Δ𝑡 = 0 

⇔ 𝐉ᇓ𝐮+ = −
𝜙(𝐪−)

Δ𝑡
  

 

(15) 

 
The equation above is identical to equation (13), except for the stabilisation terms and the offset 
velocity. 
Apart from preventing constraint drift, the presented procedure has two other advantages. First, with 
𝜀ᇓ > 0, the system matrix can be made positive definite, which leads to numerical stability and 
solvability, as we will see later. Second, by choosing appropriate stabilisation parameters, constraints 
can be relaxed, leading to softer constraint behaviour. As such, an important feature of the relaxation 
method applied in Vortex is that every positional constraint can obtain visco-elastic characteristics, and 
can be made equivalent to a spring-damper. This is achieved through a special mapping of the stiffness 
and damping coefficients in the Kelvin-Voigt model to the generic Baumgarte stabilisation parameters.  
This is a significant benefit, as it is particularly hard to find good Baumgarte parameters for a given 
constraint [8], and one often has to resort to trial and error, which makes the procedure tedious and 
error-prone. Choosing stiffness and damping coefficients for a spring-damper, on the other hand, is an 
intuitive process because their physical effect is well understood, and the visco-elastic nature of the 
Kelvin-Voigt model is accurately reproduced in the Vortex Software multibody dynamics engine.  
This important ability of constraints in Vortex Software allows the simulation of complex behaviours, 
such as the elastic deformations of flexible cables (see the Mechanical Cable Properties section of this 
document), or elasto-plastic soil deformations in a Vortex Earthwork Systems module simulation. It is 
also used to model visco-elastic collision response between rigid bodies. As a matter of fact, this 
ability [3] allows the specification of stiffness and damping coefficients for each pair of colliding surface 
types, such as steel and rubber, which enables the user to model collision responses ranging from very 
soft to very hard. In the case of pure velocity constraints, such as motors, the relaxation parameters are 
used to introduce loss, which allows us to control the amount of energy dissipation in the constraint. 
Finally, the constraint stabilisation parameters are included in the system from equation (12), and a 
modification to the mass matrix 𝐌 is performed that accounts for the evolution of the gyroscopic 
moment over the discrete time step, yielding the modified mass matrix �ࣾ�. This further improves the 
stability of the presented time stepper. Details can be found in [9]. Putting everything together, we 
obtain the final system of constrained dynamical equations 

 
ঝ�ࣾ� −𝐉յ

𝐉 𝛆
ঞ ই

𝐮+

𝝀
ঈ =

⎣
⎢
⎡

Δ𝑡𝐠 + 𝐌𝐮−

𝐯Ј − 𝛄
𝛟(𝐪−)

Δ𝑡 ⎦
⎥
⎤ 

 

(16) 
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with diagonal matrices 𝛆 and 𝛄 defined as 𝑑𝑖𝑎𝑔(…𝜀ᇓ …)and 𝑑𝑖𝑎𝑔(…𝛾ᇓ …), respectively. The vector 
𝛟(𝐪−) assembles the scalar constraint violations at the beginning of the next time step of all 
constraints.  
As mentioned earlier, if the diagonal matrix 𝛆 is strictly positive, the system matrix in the above 
equation becomes positive definite and is thus invertible. This ensures that the system of linear 
equations is solvable using efficient numerical methods. 
 

2.5 Modeling Contacts and Friction 
Solving the system in equation (16) in order to find the constraint impulses 𝝀 and the future velocities 
𝐮+ is not sufficient in certain situations. If the simulation contains inequality constraints, arising for 
example from contacts or friction, another approach must be taken. One such method is outlined in this 
section. 
 
2.5.1 Contacts 
For the purposes of modeling contacts, we define a gap function 𝑔(𝐪) which provides the signed 
distance between the surfaces of two rigid bodies at some contact point. The value of the gap function is 
zero when the bodies touch, negative when they overlap, and positive when they are separate, 
indicating a gap. 

 
Figure 4. A single contact 𝑪 between a sphere 𝑩غ and a box primitive 𝑩و. 
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Knowing that rigid bodies should not interpenetrate, a perfectly rigid contact can be defined as the 
scalar inequality constraint, or unilateral constraint 

 𝜙֐(𝐪) = 𝑔(𝐪) ≥ 0 (17) 
 
Given a contact situation as shown in Figure 4, one possible gap function for the contact point 𝐶  is 

 𝑔(𝐪) = (𝐱φ + 𝐬φ − 𝐱ϵ − 𝐬ϵ) ⋅ 𝐧 (18) 
 
where 𝐧 denotes the surface normal at the contact point. 
The time derivative of 𝜙֐ will be required in order to include the contact constraint from equation (17) 
into our simulation framework. It is given by 

 𝑑

𝑑𝑡
𝜙֐(𝐪) =

𝑑

𝑑𝑡
ॕ(𝐱φ + 𝐬φ − 𝐱ϵ − 𝐬ϵ) ⋅ 𝐧ॖ

=
𝑑

𝑑𝑡
(𝐱φ + 𝐬φ − 𝐱ϵ − 𝐬ϵ) ⋅ 𝐧 + (𝐱φ + 𝐬φ − 𝐱ϵ − 𝐬ϵ)

⋅
𝑑

𝑑𝑡
𝐧

≈ (𝐯φ + 𝛚φ × 𝐬φ − 𝐯ϵ − 𝛚ϵ × 𝐬ϵ) ⋅ 𝐧

= [𝐧յ (𝐬φ × 𝐧)յ −𝐧յ (−𝐬ϵ × 𝐧)յ ]৷৸৸৸৸৸৸৸৹৸৸৸৸৸৸৸৺
⎣ ᆩ՚خ

⎢
⎡

𝐯φ
𝛚φ

𝐯ϵ

𝛚ϵ⎦

⎥
⎤ 

 

(19) 

 
In the expression above, the approximation arises from the assumption that the penetration depth is 
usually very small, in which case the contribution of the time derivative of the contact normal, 𝑑𝐧 𝑑𝑡⁄ ,  
becomes insignificant. 
It can be observed that a contact should induce an impulse only when the respective bodies touch, that 
is, when 𝜙֐(𝐪) = 0. On the other hand, when the bodies are separate, meaning that 𝜙֐(𝐪) > 0, the 
contact impulse will be zero. In mathematical terms, this means that the contact impulse, 𝜆ᇓ֐

, and the 
signed distance at the contact point, 𝜙֐(𝐪), are complementary variables. Another observation is that a 
rigid contact should not “stick,” expressed as the requirement that the contact impulse must be 
exclusively positive or zero, that is, 𝜆ᇓ֐

≥ 0. 
Putting both observations together, the following complementarity condition for a unilateral contact 
can be derived: 
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 0 ≤ 𝜙֐(𝐪) ⊥ 𝜆ᇓ՚
≥ 0 (20) 

 
If 𝜙֐(𝐪) is replaced by the approximation from equation (14), the condition above can be combined 
with the velocity integration scheme from equation (16). This is achieved by casting the dynamics 
equations and constraints into a mixed linear complementarity problem (MLCP).  
In the general sense, an MLCP is defined as follows. 

Definition 1. Mixed linear complementarity problem (MLCP): Given a known constant matrix𝐀 ∈

ℝ։×։ and constant vectors 𝑏, 𝑙, 𝑢 ∈ ℝ։×φ, an MLCP denoted by 𝑀𝐿𝐶𝑃(𝐀,𝐛, 𝐥, 𝐮,𝐰) consists of 
finding a solution vector 𝐱 ∈ ℝ։×φ, such that 

 
⎩৖
⎨
৖⎧

𝐀𝐱 + 𝐛 = 𝐰 = 𝐰+ − 𝐰−

𝟎 ≤ 𝐰+ ⊥ 𝐱 − 𝐥 ≥ 𝟎

𝟎 ≤ 𝐰− ⊥ 𝐮 − 𝐱 ≥ 𝟎

 
(21) 

 
Here, 𝐰+and 𝐰− denote the vectors which contain the positive and negative components of 𝐰, 
respectively. The vector 𝐰 is a slack variable used to turn inequalities in the system into 
equalities and is discarded once the solution is found. The vectors 𝐥 and 𝐮 respectively define 
component-wise lower and upper bounds on the solution vector 𝐱 (including ±∞). Note that the 
complementarity operator ⊥ is understood component-wise. In other words, if 〈𝐱, 𝐲〉 denotes 
the inner product of vectors 𝐱 and 𝐲, the expression 𝐱 ⊥ 𝐲 is equivalent to 〈𝐱, 𝐲〉 = 0. 

Given the above definition, a system of dynamics equations involving a set 𝐵 of bilateral constraints of 
the form 𝜙ս(𝐪) = 0 with Jacobian matrix 𝐉գ, and a set 𝑈  of unilateral contact constraints 𝜙֐(𝐪) ≥ 0 
with Jacobian matrix 𝐉ն  and gap function vector 𝒈ն ∈ ℝ|ն|×φ can be formulated as  
𝑀𝐿𝐶𝑃(𝐀,𝐛, 𝐥, 𝐮, 𝐰) with 

 
𝐀 =

⎣
⎢
⎡

�ࣾ� −𝐉գ
յ −𝐉ն

յ

𝐉գ 𝛆գ 𝟎

𝐉ն 𝟎 𝛆ն ⎦
⎥
⎤ , 𝐱 = ঢ়

𝐮+

𝝀գ

𝝀ն

৞ 
 

𝐛 = −

⎣

⎢
⎢
⎢
⎡

Δt𝐠 + 𝐌𝐮−

𝐯Ј − 𝛄գ

𝛟գ(𝐪−)

Δ𝑡

− 𝛄ն

𝛟ն (𝐪−)

Δ𝑡 ⎦

⎥
⎥
⎥
⎤

,𝐰 =

⎣

⎢⎢
⎡

0
⋮
0
𝒈ն⎦

⎥⎥
⎤ 

𝐥 =

⎣

⎢⎢
⎡

−∞
⋮

−∞
𝟎|ն| ⎦

⎥⎥
⎤

, 𝐮 = ঢ়
+∞

⋮
+∞

৞ 

(22) 
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where 𝟎ֆ denotes the zero vector [0, . . . ,0]յ ∈ ℝֆ×φ. The vectors 𝐰, 𝐥, and 𝐮 are carefully chosen such 
that only the unilateral contact constraints are modeled as inequalities with complementarity 
conditions, whereas the bilateral constraints remain equalities and do not appear in any 
complementarity condition. 
It should be noted that the lower limits on the contact impulses 𝝀ն ∈ ℝ|ն|×φare set to zero in the 
vector 𝐥, while the upper limits are unbounded. This ensures that contacts can only be compressive and 
do not “stick.” Consequently, the given MLCP can be restated in a simpler form as 

 
অ
𝐀𝐱 + 𝐛 = 𝐰
𝟎 ≤ 𝒈ն ⊥ 𝝀ն ≥ 𝟎

 (23) 
 
It is important to realise that the complementarity condition above is an approximation of the unilateral 
contact condition in equation (20). This can be seen when the vector 𝒈ն  is further analyzed. This vector 
acts as a slack variable as part of 𝐰 in the MLCP, and its components correspond to the approximated 
gap function values for all contacts in 𝑈  at the next time step. 
This becomes clearer when expanding 𝒈ն  in equation (23): 
 

 𝟎 ≤ 𝒈ն ⊥ 𝝀ն ≥ 𝟎 

⇔ 𝟎 ≤ 𝐉ն𝐮+ + 𝛆ն𝝀ն + 𝛄ն

𝛟ն (𝐪−)

Δ𝑡
⊥ 𝝀ն ≥ 𝟎  

(24) 

 
Setting the stabilisation parameters in the matrices 𝛆ն  and 𝛄ն  to 0 and 1 respectively, thereby 
assuming a perfectly rigid contact, and multiplying through by Δ𝑡 leads to 
 

 𝟎 ≤ 𝐉ն𝐮+Δ𝑡 + 𝛟ն (𝐪−)৷৸৸৸৹৸৸৸৺
≈ ᅒՀ(ؾ+)

⊥ 𝝀ն ≥ 𝟎 (25) 
 
where equation (14) is recovered in vector-form in the expression on the left-hand side. As we recall, 
equation (14) provides an approximation for the constraint function value at the next time step, which 
in the present case is the contact gap. This proves that the complementarity condition in equation (23) 
relates the approximated contact gap at the next time step to the contact‘s normal impulse, as required 
by the unilateral contact condition from equation (20). 
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It should be noted that the impulses of the bilateral constraints 𝝀գ are unbounded, as can be seen from 
their respective entries in the limit vectors 𝐥 and 𝐮. But since all constraints are part of the same MLCP, 
it is straightforward to define impulse bounds also for bilateral constraints by simply specifying finite 
values in the limit vectors accordingly. Consequently, impulse bounds can be specified for every 
constraint regardless of the type. The Vortex Vehicle Systems module makes use of this feature in order 
to specify the maximum torque a gas engine can deliver in accordance with its characteristic torque 
table (see the Engine section of this guide). Even sticky contacts can be modeled by specifying non-zero 
lower bounds in the MLCP above. Accordingly, this allows you to specify an adhesive force for every 
contact [1], which produces bounded tensile contact forces (the colliding rigid bodies would otherwise 
separate). Finally, constraint impulse bounds prove very useful when it comes to modeling friction, as 
we’ll see in the following section. 
 
2.5.2 Friction 
Dry friction arises at contact interfaces between touching rigid bodies. The resultant friction forces are 
dissipative and act to prevent tangential motion of the material surfaces relative to each other. For a 
better understanding of the friction model presented in the remainder of this section, we will define a 
local reference frame at a surface contact point 𝐶, as shown in Figure 5. 

 
Figure 5. Local reference frame at a contact point 𝑪 defined by friction axes 𝐭غ and 𝐭و, and contact normal 𝐧. 

 
The vector 𝐧 defines the contact normal, and the two orthonormal vectors 𝐭φ and 𝐭ϵ, perpendicular to 
𝐧, span the contact tangent plane. The relative linear velocity 𝐯 between the two colliding bodies at the 
contact point, and the contact force 𝐟  can be decomposed onto the local coordinate frame defined by 𝐧, 
𝐭φ, and 𝐭ϵ, and can thus be split into normal and tangent components: 
 

 𝐟 = 𝑓։𝐧 + 𝐟֏,  𝐟֏ = 𝑓φ𝐭φ + 𝑓ϵ𝐭ϵ 

𝐯 = 𝑣։𝐧 + 𝐯֏, 𝐯֏ = 𝑣φ𝐭φ + 𝑣ϵ𝐭ϵ 
(26) 
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Commonly, the Coulomb friction model is used to define the characteristics of friction. It states two 
conditions. First, the friction force must act against the relative tangent velocity, 𝐯֏, at the contact 
unless the velocity is zero. Second, the magnitude of the friction force vector 𝐟֏ is bound by the 
magnitude of the normal force, 𝑓։, expressed by the relation 
 

 
𝜇𝑓։ ≥ ఊ𝑓φ

ϵ + 𝑓ϵ
ϵ  

 
(27) 

 
The factor 𝜇 is called the friction coefficient and is related to the friction angle 𝜃 by 𝜇 = tan(𝜃). The 
friction coefficient is a material property that depends on the two types of surface materials involved in 
the interaction, and can be specified as part of the contact material configuration [1]. The friction 
relation given above defines the so-called friction cone, erect at the contact point, which bounds the 
friction forces. The friction cone is shown in Figure 6. 

 
Figure 6. Friction cone: Polyhedral approximation (a) and box-approximation of the friction cone (b). The latter is used in the iterative scaled box approach. 
 
Friction forces will always be inside this cone. For a sliding contact, i.e., a contact with non-zero relative 
tangent velocity, the friction force lies on the surface of the cone. For a static contact, i.e., a contact with 
zero relative tangent velocity, the friction force can lie anywhere inside the cone. 
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In the case of a static contact, the maximum friction force is higher than for a sliding contact. This is 
caused by interlocking effects of the contacting surfaces at the microscopic level and is commonly 
modeled as an increase of the friction coefficient which corresponds to an increase in the opening angle 
of the friction cone. As such, one distinguishes between static and kinetic friction with respective static 
and kinetic friction coefficients, 𝜇֎ and 𝜇ֆ. 
Assuming 𝜇֎ = 𝜇ֆ = 𝜇 for simplicity, the Coulomb friction model, outlined above, can be expressed as 
 

 

⎩
৖৖
⎨

৖৖
⎧𝜇𝑓։ ≥ ఊ𝑓φ

ϵ + 𝑓ϵ
ϵ 

‖𝐯֏‖ ঁ𝜇𝑓։ −ఊ𝑓φ
ϵ + 𝑓ϵ

ϵ ং = 0

𝐟֏ ⋅ 𝐯֏ = −‖𝐟֏‖‖𝐯֏‖

 

 

(28) 

 
The friction cone condition (first line above) is non-linear, which makes its inclusion into the MLCP in 
equation (22) impossible. A more general, non-linear complementarity problem would have to be 
formulated instead, which is computationally more demanding and not feasible in an interactive 
simulation setting. A common alternative approach is to replace the non-linear friction cone by a 
polyhedral approximation as shown in Figure 6, which yields a linear expression and leads to an MLCP. 
This approach is taken in the work of Anitescu and Potra [9]. However, in this case, additional unknowns 
and constraints need to be added to the resultant MLCP in order to model all conditions in equation 
(28), which increases the computational complexity of the formulated problem. 
In Vortex Software, an alternative approach is taken that significantly simplifies the problem. The idea 
behind this approach lies in solving a sequence of MLCPs with increasingly better approximations of the 
friction force bounds. To this end, the friction force bounds in the MLCP, which are otherwise defined by 
the friction cone and are therefore dependent on the normal force, are considered as constant force 
limits in every iteration. Those force limits can be specified in the MLCP as part of the constant bounds 
vectors l and u, as demonstrated in the previous section. 
Furthermore, the friction force at a given contact is represented as a linear combination of the two 
orthonormal tangent vectors 𝐭φ and 𝐭ϵ, called friction axes, leading to a “box” approximation of the 
friction cone. This “friction box” is shown on the right side in Figure 6. The friction box changes its size in 
every iteration based on the last known normal force at the contact and the friction coefficient. For 
every friction axis, a velocity-level constraint is added to the system which attempts to produce a zero 
relative velocity on the contact plane along the given axis. 
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In iteration 𝑙 + 1 of the procedure outlined above, an MLCP is solved that includes the set of bilateral 
constraints 𝐵, unilateral contact constraints 𝑈 , and a set of 2|𝑈| friction constraints 𝐹 , with two friction 
constraints per unilateral contact constraint. It is defined as 𝑀𝐿𝐶𝑃(𝐀∗, 𝐛∗, 𝐥∗, 𝐮∗,𝐰∗) with 
 
 

 
𝐀∗ =

⎣

⎢
⎢
⎡

�ࣾ� −𝐉գ
յ −𝐉ն

յ −𝐉է
յ

𝐉գ 𝛆գ 𝟎 𝟎

𝐉ն 𝟎 𝛆ն 𝟎

𝐉է 𝟎 𝟎 𝛆է ⎦

⎥
⎥
⎤
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⎢
⎡

𝐮+
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(29) 

 
where 𝐛, 𝐰, 𝐥 and 𝐮 are defined as in equation (22), and 𝐉է  denotes the combined Jacobian matrix of all 
friction constraints. The term 𝝀

ն

(և+φ)
 corresponds to the sought vector of contact impulses in iteration 

𝑙 + 1. The lower and upper impulse bounds of the friction constraints in 𝐥∗ and 𝐮∗ are updated from the 
normal impulses of their associated unilateral contact constraints in the previous iteration and the 
friction coefficient 𝜇, according to equation (28). Here, 𝜆

նӴք

(և)  denotes the normal impulse of the 𝑖th 
contact constraint in the set 𝑈  in iteration 𝑙. 
The vector 𝒔է  is used as a slack variable analogously to 𝒈է  in equation (22), and contains the scalar 
tangential contact velocities along the respective friction axes, one component per axis. It makes sure 
that the friction force acts always against the tangential contact velocity as required in the Coulomb 
friction model and as specified in equation (28). This requirement is modeled as a complementarity 
condition in the resultant MLCP. 
The diagonal matrix 𝛆է  is used for regularisation of the MLCP and allows us to model friction as a 
viscous drag force, which can be useful when simulating a slipping wheel, for example. The desired slip 
factor (inverse of drag coefficient) can be specified in the contact material configuration [1]. 
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The iterative procedure is initiated by first solving 𝑀𝐿𝐶𝑃(𝐀,𝐛, 𝐥, 𝐮, 𝐰), which does not contain any 
friction constraints (see equation (22)). The normal impulses of the contacts obtained in this initial solve 
will be used to specify the associated friction impulse bounds for the first iteration of solving 
𝑀𝐿𝐶𝑃(𝐀∗, 𝐛∗, 𝐥∗, 𝐮∗,𝐰∗), as described further above. The method then proceeds iteratively. 
Since during the iterative procedure the friction boxes are constantly scaled according to the last known 
normal impulses, the method is termed scaled box approach [1]. The number of friction iterations can 
be parameterised if higher quality solutions are required. By default, only one iteration is performed, 
which has been shown to give satisfactory results in a real-time simulation setting. 
For staying contacts, i.e., contacts that are known from the previous time step, an alternative approach 
can be employed in Vortex Software. For those contacts, the friction force bounds are set according to 
the normal force from the previous time step. In this method, friction bounds improve over a sequence 
of simulation steps rather than in a single step. It avoids the iterative procedure above and is thus more 
efficient, while yielding comparable results in many cases. In simulations where the friction bounds are 
known quantities, they can also be specified explicitly by the user. For more information, please refer to 
[3].  
 

2.6 Solving the MLCP 
As shown in the last section, stepping the simulation forward in time requires solving an MLCP (or a 
sequence of MLCPs). A linear complementarity problem (LCP) is a combinatorial problem with 2։ 
possible solutions, where 𝑛 is the number of unknowns. Therefore, enumeration methods lead 
necessarily to a solution if one exists. However, they are obviously not efficient and therefore 
inappropriate for interactive simulation. 
For certain applications, such as the simulation of granular materials or deformable bodies, iterative 
solvers are efficient methods that produce good results [10] [11]. Iterative solvers for LCPs are 
commonly used for rigid body dynamics in interactive, physics-based computer games. In this domain, 
the motivation lies in demonstrating intriguing, visually attractive behaviour with often very little 
available computational time. Lack of physical accuracy is therefore only a small concern, and a very 
small number of solver iterations are usually enough to achieve the desired effects. Consequently, the 
computed solutions are not exact and inaccuracies might arise in the simulation, which are accepted. 
When it comes to immersive training or real-time engineering applications, quite complex systems must 
often be simulated under time constraints that are equally restrictive. And in such cases, high physical 
accuracy is mandatory, as relying on simulations that suffer from a lack of physical correctness can cause 
financial losses or jeopardise operator safety. Also, very stiff constraints and high mass ratios are often 
involved.  
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Under such circumstances, iterative solvers are typically unable to deliver sufficiently accurate results in 
the available computational time. Only with a high number of iterations can an iterative solver converge 
to the exact solution in this case, or produce a solution with insignificant error.  
Choosing a high iteration count, however, comes with high time consumption, which can slow down the 
simulation to levels below real-time or interactive update rates. 
With insufficient iteration count, on the other hand, the obtained solution vector can contain significant 
error.  
This can mean that constraints in the system would remain violated, which in particular can cause some 
of the following undesired effects:  

 Contacts are not respected, manifesting as collision responses that are too soft.  
 Friction forces are too low, causing objects to slide and never stabilise.  
 Articulations, such as hinges, break down and do not remain in their sockets.  
 The error in the solution vector may also vary between time steps, producing varying 

accelerations, which leads to jittering rigid bodies.  
A lot of research has focused on reducing or preventing these artifacts when using iterative methods 
with low iteration counts, such as pre- and post-stabilisation of constraints or shock propagation 
methods [5] [12] [13]. However, the fundamental issue remains that the solution accuracy of iterative 
solvers is tied to the iteration count, which in turn affects time consumption. 
An alternative category of LCP solvers consists of direct methods. Such solvers produce exact results that 
satisfy all constraints and conditions in the system. Direct solvers generally have worse time complexity 
than iterative solvers.  
However, they are still more efficient and preferable in an interactive simulation setting where 
approximate solutions are not acceptable, the reasons of which have been outlined above. For an 
overview of direct methods for the solution of LCPs and MLCPs, see [14]. 
The constraint-based, velocity-level formulation in Vortex Software’s multibody dynamics engine and 
the use of a direct solution method allow large time steps without introducing instabilities. This makes it 
possible to simulate complex physical mechanisms at real-time frame rates.  
This is partially due to certain time step-independent operations which have to be performed in every 
simulation step, such as collision detection. These operations add fixed costs in terms of computational 
time which are independent of the chosen time step. With the ability to choose a larger time step, the 
time spent on these operations per second of simulated time can be drastically reduced, leading to 
improved efficiency. 
The default time step in a Vortex Software simulation is 1/60 seconds, which corresponds to a 
simulation frequency of 60Hz. Obviously, with low simulation frequencies, high-frequency system 
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vibrations cannot be represented and are filtered out. But at the same time the system can be stepped 
forward a large amount of time with significantly less computational effort. 
Vortex Software’s multibody dynamics engine offers both a direct and an iterative solver, which can be 
chosen depending on the needs of the simulation.  
For example, an iterative method is used for the simulation of granular material in the Earthwork 
Systems module (see the Earthwork Systems section of this guide), whereas the direct solver is used by 
default for the simulation of hoisting systems with taut, stiff cables and large mass ratios (see the Cable 
Systems section of this guide). Individual partitions (see the Multibody Dynamics Simulation section of 
this document) can be solved with different solver types. This makes it possible to choose the right tools 
for the job.  
For example, one can put more emphasis on the physical accuracy in one key area of the simulation, 
while trading accuracy for speed in another. This flexibility makes Vortex Software appropriate for a 
wide range of simulations. 
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3 CABLE SYSTEMS 
The Vortex Cable Systems module provides the capability to simulate flexible cables and complex 
hoisting systems. It provides out-of-the-box creation of cables, ropes and wires that are suspended over 
systems of winches and pulleys. Furthermore, tools are available to aid in the modeling of structures 
such as static pipes and pipelines, and simple cables that always remain in a catenary shape. 
Specifically, the Cable Systems module supports three types of cable models: 

 generic cables 
 catenary cables 
 pipes 

These models are explained in more detail in the following sections.  
At its core, the Cable Systems module makes use of the Vortex Software multibody dynamics framework 
presented in the previous section. It uses constraints and rigid bodies for modeling the kinematics and 
dynamics of cables and their physical interaction with the simulation environment. As such, cables are 
fully integrated with the multibody dynamics solver and other simulation components such as collision 
detection and fluid dynamics. 
 

3.1 Generic Cables 
A cable can be seen as a mechanical system which transfers a force from one point (e.g., a winch) to 
another point (e.g., a load) through an arrangement of pulleys and rings. A generic cable models such a 
system. It is represented by a sequence of points, such as pulleys and rings, along which a cable is 
passed. The length of cable between every consecutive pair of points is called a segment. Figure 7 
depicts an example configuration. 
 
3.1.1 Points and Segments 
Several types of points are supported in a generic cable. An example cable which makes use of various 
different types is shown in Figure 8. 
The available point types are: 

 Winch:  
A winch is defined by a rigid body which is connected to some frame of reference through a 
constraint that enables rotation around a specific axis, the winch axis. One such constraint is a 
hinge, which is readily available in the Vortex Software multibody dynamics framework. A winch 
can be placed at the beginning or the end of a generic cable, and is used to feed cable length 
into the system or retract a cable through rotation of a motorised joint. The spooling speed of 
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the cable depends on the rotation speed of the winch joint and the winch radius. Speed and 
torque characteristics of the winch are modeled using core constraint properties provided in the 
multibody dynamics formulation, such as the minimum and maximum torque the constraint can 
apply and a desired target velocity. For more details refer to the Multibody Dynamics Simulation 
section of this guide. 

 Pulley:  
A pulley is defined by a rotating rigid body and a constraint that provides an angular degree of 
freedom, such as a hinge. It is used to model a mechanical pulley that directs a cable over some 
point in the mechanism.  

 Ring:  
A ring is defined by a fixed point on a rigid body and a specific direction. A cable will pass 
through the ring and will be guided by it. 

 Attachment:  
An attachment is defined by a fixed point on a rigid body and is used to specify the beginning or 
end of the cable, such as the hook in a hoisting system. 

 
Figure 7. Points and segments: An example of a generic cable structure modeling a simple hoisting system which involves different segment and point types. 

 
Through the constraint-based modeling approach, the dynamics of the cable and its support structure 
will comply with the laws of mechanics. As such, forces applied to the cable will be naturally transferred 
to pulleys, rings and winches, and therefore to the rest of the machine, such as a crane.  
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Point (Attachment) 
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The segments in a generic cable represent the cable’s geometry, its mass and mechanical properties. 
Depending on the required physical detail of the cable model, two different types of segments can be 
chosen: Flexible and non-flexible segments. These will be discussed in the following sections. 
A flexible segment provides the highest level of physical fidelity in a generic cable. In flexible segments, 
the cable is modeled as a deformable body, which bends, twists and elongates according to solid 
mechanics theory. More details will be provided in the following sections.  
 

 
Figure 8. Generic cable configuration example. A winch is used as the first point in the cable and a load is attached to its end. 
 
A non-flexible segment models a cable as a massless entity. It captures only the effect the cable segment 
has on neighboring points and segments in the generic cable, and omits any dynamics of the cable itself. 
It can be used as a computationally efficient tool for modeling specific operations or some specific 
portions of a hoisting system. 
It should be noted that flexible and non-flexible segments can be freely combined in a single generic 
cable. They are fully coupled through the use of Vortex Software constraints and rigid bodies. Therefore, 
the segment type can be chosen entirely based on the level of physical accuracy at the respective 
location in the system. For example, in a mobile crane, the cable segments leading from the winch to the 
tip of the crane’s boom can be modeled with non-flexible segments, thus omitting any oscillations that 
might arise while the cable comes under tension, whereas the final segment from the tip to the hook 
can be modeled with a flexible segment. 

Pulley 
Ring 

Attachment Point 

 Winch 
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The fundamental modeling approach in a generic cable lies in choosing specific constraints to connect 
segments across neighboring points in the system. For example, connecting two pulleys that are a fixed 
distance apart with a non-flexible segment will omit the dynamics of the cable segment itself and create 
a constraint between the two pulley parts instead. This constraint will ensure that the rotation speed of 
the pulleys multiplied by their respective radii matches, and is a simplified way of representing a cable 
being passed from one pulley over to the next. This purely constraint-based representation of cables is 
referred to as massless modeling approach. 
When using a flexible segment, on the other hand, the cable portion will be discretised into a certain 
number of (massive) rigid bodies connected by elastic constraints, modeling the elastic characteristics of 
the cable. The bodies at the ends of the cable are connected to the pulleys with a specialised constraint 
that keeps the cable tangent to the pulley surface and makes sure that it is guided by the pulley groove. 
An additional constraint is used to relate the rotation of the pulley to the length of the cable, feeding 
cable length in or retracting it whenever the pulley rotates. A winch functions in a similar way. Any 
flexible segment that is connected to the same pulley on the other side will be retracted when the first 
segment is spooled out, and vice versa. This is to ensure that the total cable length of the segments 
remains constant as expected. 
No matter which combination of segments and point types is used, one or multiple constraints will be 
created between the involved bodies in order to maintain the equilibrium of forces and to correctly 
transfer cable length across points in the system. Some of the utilised constraints are readily available in 
the Vortex Software SDK, such as gear ratios or double winches. But some constraints are customised to 
their use in generic cables and are internal to the Cable Systems module. For more details on the 
constrained-based cable modeling approach, see [15]. 
 
3.1.2 Flexible Segments 
As mentioned earlier, flexible segments are modeled by discretising the cable material into a series of 
rigid bodies connected by cylindrical joints that produce elastic bending, torsion and elongation 
characteristics. This representation is also known as the lumped element model, referring to the rigid 
bodies as lumped elements shown at the top of Figure 9. 
A cylindrical joint is modeled as six scalar constraint equations — three linear and three angular 
constraints that constrain the relative linear and angular motion of the connected rigid bodies 
respectively. The joint acts along three orthogonal axes, each axis defining a relative linear and angular 
motion frame for the connected rigid bodies. This situation is depicted in Figure 9. If the cable is straight, 
the constraint equations are not violated, but as soon as the cable bends, twists or elongates, specific 
positional violations arise in the joint in specific constraint equations (see bottom of Figure 9. More 
details on the parameterisation of the cable joints leading to proper elastic responses of the simulated 
cable are given in the next section. 
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Flexible segments can collide with other entities in the simulation. For this purpose, every lumped 
element has an associated capsule-shaped collision geometry which provides a piecewise linear 
discretisation of the cable shape. For improved graphical fidelity, a mesh subdivision approach in the 
cable visualisation is used in order to display as smooth a cable as possible. 

 
Figure 9. Cable joint model: Lumped element model of a flexible cable. Top: neighboring rigid bodies with centers of mass at 
𝐫غand 𝐫و are connected with a joint that defines two local frames of reference defined by orthonormal vectors 𝐱ۦ, 𝐲ۦ and 𝐳ۦ 
attached to rigid bodies 𝒊 ∈ {𝟏, 𝟐}. Axes and origin of the reference frames are identical when joint is not violated, i.e., cable is 
straight, and not twisted or stretched at respective locations. Bottom: Cable is bent locally at joint around 𝐳 axis, which leads to 
an angular joint violation 𝜶, measured in the constraint equation as a rotation between the two local frames of reference. 
 
3.1.3 Mechanical Cable Properties 
As presented in the Stabilisation and Relaxation section of this guide, the technique of constraint 
relaxation in the Vortex Software multibody dynamics framework can be used to assign elastic 
characteristics to every positional constraint in Vortex Software. This fact is used to model the elasticity 
of the cable material in accordance with established theories of elasticity. As a result, reaction forces of 
the cable due to stretch, twist and bending are accurately simulated. 
In the Vortex Cable Systems module, the mechanical properties of a cable are set up using cable 
engineering terminology and concepts, which are shown in Figure 10. The mass of the individual cable 
elements in the discretised, lumped element model are computed from a user-provided linear or 
volumetric cable density. Furthermore, elastic cable behaviour is determined from the percentage of 
elongation under a given load, the Young’s modulus of the cable material, the cable radius, and the 
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number of wire threads. The elastic behaviour of a cable is captured through the use of elastic 
constraints at the cable joints. The appropriate elongation, bending and twist stiffness coefficients of 
every joint are computed from the user-provided engineering parameters mentioned above. In the 
following sections, this process is described in more detail. In verification experiments it was shown that 
the applied simulation model is accurate. For details, see the “Cables Systems” section in [16]. 
 

 
Figure 10. Mechanical cable properties: The mechanical properties used to define the behaviour of flexible cable segments under applied loads, as well as the cable’s density. In the output container, the automatically computed axial, bending and torsion stiffness coefficients are shown. 

 
 
Elongation 
The cable’s elongation (or axial) stiffness can be deduced from the user-provided percentage of 
elongation that should occur in the cable under a given load. Assuming Hookean material behaviour, if a 
load (or weight force) 𝑊  is applied to a cable of length 𝐿, the cable’s elongation Δ𝑙 is linearly related to 
the material’s specific axial stiffness coefficient 𝑘ռ: 

 𝑊 = 𝑘ռ∆𝑙  (30) 
 
Writing the relative elongation (or linear strain) as  ε = Ⴓև

ί
, the expression above can be restated as 
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 𝑊

𝜀 
= 𝑘ռ𝐿 (31) 

 
It should be noted that  𝑘ռ is the axial stiffness of the entire length of cable. Once subdivided into a 
finite number of ݊ lumped elements in the discretised cable model, the axial stiffness 𝑘ռӴք of the linear 
spring constraint at joint 𝑖 can be computed from  
 

 𝑘ռӴք = 𝑛 ⋅ 𝑘ռ 

=
𝑊

𝜀 𝑙ք
=

𝐾ռ

𝑙ք
 

 

(32) 

 
The expression above introduces the unit axial stiffness coefficient 𝐾ռ, which is independent of the 
lengths of the individual lumped elements, and is therefore not affected by the discretisation of the 
cable. It is defined as 𝐾ռ ≔ ո

ᇗ 
 and has units of force. 

 
Bending 
Based on the Bernoulli beam theory, the Young’s modulus of the cable material defines the bending 
stiffness of each of the cable’s wire threads. According to this theory, if a beam is bent such that locally 
it deforms with a radius of curvature 𝑅, a restoring moment is produced which is given by: 
 

 
𝑀 = 

𝐸 ⋅ 𝐼

𝑅
 (33) 

 
In the expression above, 𝐸 denotes the Young’s modulus of the cable material, and  𝐼 = ᇎ֍ȃ

ϵ
  is the 

second moment of area of a single wire’s cross-section, with ݎ being the radius of one wire thread of the 
cable. 
The cable’s lumped elements are connected by angular spring constraints, which need to have a specific 
bending stiffness coefficient such that the discretised cable model respects the Bernoulli beam theory. 
By again assuming a Hookean material, a bending moment 𝑀  applied locally at some joint 𝑖 (which 
connects two lumped elements of length 𝑙ք) induces an angular deformation 𝜃 proportional to the 
joint’s bending stiffness 𝑘սӴք: 

 𝑀 = 𝑘սӴք ⋅ 𝜃 (34) 
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By simple geometric analysis, the radius of curvature at joint 𝑖 can be approximated by  

 
𝑅 = 

2𝑙ք
𝜃

 (35) 
 
Combining equations (30) through (32), we obtain the following relation between the bending stiffness 
𝑘սӴք of the lumped elements and the Young’s modulus of the material: 

 
𝑘սӴք = 

𝐸 ⋅ 𝐼

2𝑙ք
 (36) 

 
It should be noted that 𝑘սӴք corresponds to the bending stiffness in a single wire thread of the cable only. 
The combined bending stiffness of all wire threads in the cable is computed as the sum of the 
contributions of the 𝑛 individual wire threads. By doing so, the effect of the weaving of the threads on 
the effective bending stiffness in the cable is neglected. 
As before, in order to obtain a stiffness term which is independent of the discretisation of the cable, we 
define the unit bending stiffness coefficient 𝐾ս with units of torque as 

 
𝐾ս ≔ 

𝐸 ⋅ 𝐼

2
 (37) 

 
 
Torsion  
In order to compute the torsion stiffness of the lumped cable elements, a theory from solid mechanics is 
applied, which relates the restoring moment 𝑀  resulting from an axial twist 𝜃 of the cable to the shear 
modulus 𝐺: 

 
𝑀 = 

𝐼 ⋅ 𝐺 ⋅ 𝜃  

𝐿
 (38) 

 
In the expression above, the term 𝐿 corresponds to the cable’s full length, and 𝐼  denotes the second 
moment of area of a single wire’s cross-section (see equation (33)). 
As before, Hook’s law is applied in order to deduce the torsion stiffness coefficient of the cable. 
Accordingly, an applied moment 𝑀  produces a twist angle 𝜃 that is linearly related to the torsion 
stiffness 𝑘֏: 
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 𝑀 = 𝑘֏ 𝜃 (39) 
 
Combining equations (38) and (39) and solving for 𝑘֏ we obtain 

 
𝑘֏ =

𝐼 ⋅ 𝐺

𝐿
 (40) 

 
It should be noted that the term 𝑘֏ corresponds to the torsion stiffness of the full length of cable. If the 
cable is discretised into 𝑛 equidistant lumped elements, the torsion stiffness 𝑘֏Ӵք between two elements 
of length 𝑙ք can be expressed as 

 𝑘֏Ӵք = 𝑛 ⋅ 𝑘֏ (41) 
 
With 𝐿 = 𝑛 ⋅ 𝑙ք and taking into account equation (40), we can rewrite this expression as  

 
𝑘֏Ӵք = 

𝐼 ⋅ 𝐺

𝑙ք
=

𝐾֏

𝑙ք
 (42) 

 
where we defined the discretisation-independent unit torsion stiffness 𝐾֏ ≔ 𝐼 ⋅ 𝐺, which has units of 
torque.  
Since the shear modulus 𝐺 is related to the Young’s modulus 𝐸 and the Poisson ratio 𝜈 by 𝐺 = զ

ϵ⋅(φ+ᇌ)
 

the unit torsion stiffness can also be expressed as 𝐾֏ = ժ⋅զ
ϯ

 . In Vortex Software, a flexible segment is 
assumed to have a fixed Poisson ratio of 0.5. In general, the Poisson ratio can range from 0.2 to 0.5 for 
typical cable materials. Also, the Bernoulli beam theory is valid for cables with Poisson ratio of 0.5, as 
long as the cable’s length is significantly larger than its radius, which is a fair assumption.  
 
3.1.4 Advanced Simulation Techniques 
As demonstrated in the “Dynamics Add-ons” section of the Vortex Software Solution Verification and 
Validation guide [16], the mechanical characteristics of flexible cable segments are accurately 
represented in the lumped element model. However, this approach can suffer from instabilities due to 
excessive transversal forces acting on the lumped elements in cases where high tensions in the cable 
arise. In a system without any damping, these forces would cause high-frequency vibrations, which, 
however, cannot be captured at the large time steps necessary for real-time simulation speeds. As a 
consequence, the system will blow up. This artifact can be eliminated through the use of the internal 
damping technique. 
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Furthermore, when using a very high cable resolution (i.e., when using many, short lumped elements) or 
when the cable becomes too long, the number of lumped cable elements can become excessive. This 
may increase the computational time in the simulation, to levels that make real-time simulation rates 
unfeasible. This problem is addressed by the adaptive cable mode. 
 
3.1.4.1 Internal Damping 
The internal damping feature allows stable simulation of flexible cables that are subject to very high 
tension, and which would otherwise become instable. In experiments, this feature produced stable 
simulation of a cable under tension for a mass ratio of 1:100000, relating the mass of a single lumped 
element in the cable to the mass of the attached load.  
When activated, the feature increases the internal damping of the constraints in proportion to the axial 
tension in the cable. This means that the damping can help improve the stability of a cable under 
tension, which can otherwise start vibrating, but damping will not be added when a cable is slack and 
should be allowed to bend freely. 
 
3.1.4.2 Adaptive Cable Mode 
The adaptive cable mode reduces the computational time required to simulate flexible cables that have 
a large number of lumped elements. When activated, it constantly measures the activity of the joints in 
the cable, and adaptively activates or deactivates them during simulation based on the motion 
characteristics in the cable.  
When the level of motion of a joint falls below some threshold, the joint is deactivated, and the adjacent 
lumped elements rigidly linked together, thus reducing the computational load. When motion is 
detected at the joint, it is reactivated. Joint motion is detected by performing sub-simulations of the 
deactivated cable joints in parallel. 
The trade-off between physical accuracy and simulation speed can be parameterised by specifying a 
budget of joints that can be active at any point in time in the simulation. The budget is distributed over 
the cable segment based on the motion characteristics measured in the joints, with the goal to keep the 
reduction in physical accuracy to a minimum.  
This adaptive cable simulation approach can lead to significant speedups in simulation time compared to 
the full cable simulation. 
 

3.2 Pipes and Catenary Cables 
Vortex Software offers an optimised implementation for modeling pipes and pipelines. The shape of the 
pipe is specified manually prior to simulation start using B-spline control points in the Vortex Editor, and 
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does not change after the simulation has started. The collision shape is modeled as a series of capsule 
collision geometries. In collision, the pipe acts as a static and infinitely massive object. An example of the 
use of pipes in Vortex Software is shown in Figure 11. 
 

   
Figure 11. Subsea structure with pipes and a tethered ROV 

 
Catenary cable models are used for the simulation of systems such as a risers and mooring lines. Unlike 
pipes, the shape of catenary cables can change during simulation based on the motion of a set of 
attachment points. However, as opposed to generic cables, their shape is animated instead of simulated 
dynamically. Several pre-configured catenary cable configurations are available, such as simple free-
hanging catenaries and more specialised cable configurations for the modeling of subsea risers such as 
“lazy wave” or “steep wave” risers. As pipes, catenary cables can induce collisions with other simulation 
entities. 
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4 VEHICLE SYSTEMS 
The Vortex Vehicle Systems module provides the ability to model and simulate ground vehicles 
integrated with the Vortex Software multibody dynamics framework. For ease of use during vehicle 
modeling and design, the internally employed constraint-based modeling approach is abstracted away 
by the user-facing Vehicle Systems data model. In this model, an extensible set of common vehicle 
components is provided, and can be assembled to create most common vehicle types. 
 

4.1 Vehicle Topology 

 
Figure 12. Vehicle components: Structure of a front-wheel-drive car powertrain. Vehicle components are emphasised in green. 
 
A vehicle’s powertrain is constructed by connecting several specific vehicle components, depending on 
the type of vehicle. Each component has its own set of parameters so that it can be adjusted to fit the 
corresponding vehicle’s specifications. Examples are the maximum steering angle or the engine’s 
characteristic torque table. The powertrain of a front wheel drive car and the components involved are 
shown in Figure 12. 
The topology of the vehicle component graph must correspond to a single or multiple trees (i.e., a 
forest). Depending on the number of inputs or outputs, a component is either the root of the tree, an 
inner node or a leaf. As an example, Figure 13 shows a common vehicle topology, where the Engine 
component is the root of the vehicle’s powertrain, which includes a torque converter and a transmission 
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as inner nodes, and has a number of wheels as leafs. One additional trivial tree sub-structure in this 
example is the chassis component. 
Internally, a compiler assembles all the independent vehicle components in a vehicle system and 
connects them. The vehicle topology is defined using a template that is stored in a specific file format. 
When the template file is loaded, a vehicle is created by adding connections between the vehicle 
components. Once the vehicle is created, the components can be customised using their 
parameterisations before starting the simulation. 
 

 
Figure 13. Vehicle topology: Topology of a front-wheel drive car, modeled with several connected vehicle components that are interacting with a logic layer. 
 
The vehicle components are linked together through the use of rigid bodies and constraints. Most 
vehicle components are actually linked by physical shafts as in a real vehicle. Consequently, the 
dynamics of simulating the vehicle is an emerging behaviour of physically interacting vehicle 
components simulated using the multibody dynamics framework presented in the Multibody Dynamics 
Simulation section of this guide. 
On top of the physical links between vehicle components, there is a logic layer in every vehicle, in which 
individual components can communicate. For instance, as shown in Figure 13 the desired throttle is 
communicated to the engine, which uses this information to derive the gas quantity that has to be 
injected. The same information is required by the automatic transmission to assess when to switch 
gears. 
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4.2 Common Components 
In this section, several common vehicle components, available in the Vehicle Systems module, are 
presented in more detail. 
 
4.2.1 Chassis 
The chassis component contains a rigid body with mass properties (center of mass and inertia tensor) 
that mimic the properties of the real vehicle chassis. It also holds one or more collision geometries that 
represent the shape of the chassis for handling of collisions with the vehicle’s environment. A vehicle 
can contain several chassis, which is especially useful for modeling articulated vehicles such as 
forwarders or wheel loaders. Another application of multiple chassis is the simulation of dependent 
suspension systems such as a bogie or a beam axle. 
 
4.2.2 Engine 
The engine component creates a motorised hinge joint between the chassis of the vehicle and an engine 
shaft, represented by a rigid body. The motorised hinge is driven according to a user-provided 
characteristic torque table. This table is specific to each engine and provides the maximum torque the 
engine can provide based on the chosen input throttle and the current engine RPM. An example torque 
table is shown in Figure 14. In every simulation step, the maximum torque that the engine’s hinge joint 
can deliver is updated according to the torque table, by setting the corresponding entries in the impulse 
limit vectors, 𝐥 and 𝐮, of the Vortex Software multibody dynamics MLCP described in detail in the 
Multibody Dynamics Simulation section of this guide. 
The mass and inertia of the engine’s shaft are important factors in the behaviour of an engine. Through 
the use of a rigid body for the modeling of the shaft, the impact of the shaft’s mass properties on the 
vehicle dynamics is an emerging behaviour of Vortex Software’s multibody dynamics formulation. 
Both gas engines and electric motors are simulated using the same principal approach, that is, a 
characteristic torque table. However, as opposed to a gas engine, an electric motor is allowed to spin in 
both directions. 
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Figure 14. Gas engine torque table: Example torque table of a sports car gas engine with maximum RPM of 6000 and 320 Newton-meters maximum torque. 
 
For a gas engine, a start engine logic component is introduced to simulate starting the engine. This 
component also models stalling when the engine’s RPM falls below the level required to keep the engine 
running. This is very useful for simulation of a manual transmission vehicle, in which case the engine 
could stall when gears are shifted carelessly. 
 
4.2.3 Torque Converter 
The torque converted connects the engine to the transmission through hydraulic coupling. The torque 
converter component is modeled analogously to the engine, using rigid bodies and constraints. Two 
incoming and outgoing shafts are allowed to rotate around a fixed axis relative to the vehicle chassis. 
One shaft represents the propeller (or the pump) and the other one is the turbine. This setup is shown in 
Figure 15. 
The turbine is connected to the engine shaft, and the propeller is connected to the input shaft of the 
transmission (although the Vehicle Systems module allows the use of a torque converter to connect any 
two components). The coupling of the two shafts is modeled by a standard gear ratio constraint that 
forces the two shafts to rotate at the same speed. The maximum torque of the gear ratio joint is limited 
to be equal to the drag force that would come out of a true torque converter, which is proportional to 
the relative speed squared of the two shafts. For a more realistic coupling, the contribution of the 
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lambda curve is considered, which allows us to model the effect of the shape of the blades of the 
turbine and the propeller. For a detailed discussion of this subject, see [17] 

 
Figure 15. Torque converter: Diagram of a torque converter that connects engine and transmission through hydraulic coupling.  
 
Another important feature modeled in the torque converter component is the torque multiplication that 
arises because of the special stator gear found in real torque converters. This is implemented as a 
lookup table that gives the torque multiplication with respect to the relative speed of the two shafts. 
The torque multiplication curve is provided by the torque converter manufacturer.  
It is worth mentioning that the engine’s characteristics and the torque converter have to be matched 
carefully with the real vehicle components. For instance, an engine that is too strong will rotate too fast, 
resulting in a less efficient system, or even cases where no torque is transmitted. If the engine is not 
strong enough compared to the torque converter, the engine will stall. It should be noted that the 
torque converter lock is not implemented directly in the component, as this feature is dependent on the 
vehicle manufacturer. Instead, the component exposes an interface allowing engineers to model their 
own locking system, which can be matched with the real system. 
 
4.2.4 Shaft 
The vehicle compiler adds shafts as required to link vehicle components. Apart from this internal shaft, a 
specific shaft component exists to which vehicle components can be linked explicitly by the user. The 
shaft component can have any number of outputs and thus can be used to link more than two 
components.  
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The shaft component has many applications. For instance a shaft can be used to plug a retarder 
component between the transmission and a differential. Another use case would be the simulation of a 
hybrid car. In this case a shaft can be used to link the electric motor, the gas engine and the rest of the 
powertrain together.  
In case of a standard car, practically all of the engine’s power is used to drive the wheels. However, 
certain vehicles use the engine’s power to move other parts of the vehicle. For instance, in an excavator 
the hydraulics system utilises the power of the engine in order to move the mechanical arm. The shaft 
component provides a way to apply external torques on the engine, and as such makes it possible to 
simulate this scenario. 
 
4.2.5 Transmission 
4.2.5.1 Automatic Transmission 
As in a real vehicle, the automatic transmission component uses the input throttle and the engine’s 
current and maximum RPM to decide when to change gear, and to which. Multiple parameters are 
available to customise the transmission behaviour. As in a manual transmission, the number of reverse 
and forward gears and their gear ratios can be specified. Moreover it can be specified at what RPM the 
gear will change, the time the gear change will take, and how smoothly the gear shift will be performed. 
4.2.5.2 Hydrostatic Transmission 
In the Vehicle Systems module, the hydrostatic transmission is simulated by relating the angular 
velocities of the transmission’s input and output shafts, both represented by rigid bodies, via a gear ratio 
joint. 
In its simplest form, the constraint equation for a gear ratio joint between two bodies 𝑖 and 𝑗 can be 
written as 

 𝛚ք
յ 𝐧ք − 𝑟 ⋅ 𝛚օ

յ 𝐧օ = 0 (43) 
 
where the scalar 𝑟 is the constant ratio of the joint, 𝛚քand 𝛚օ denote the angular velocities of the 
bodies, and 𝐧ք and 𝐧օ are some specific axes of interest. It can be seen that the gear ratio joint 
constrains the angular velocities of the two bodies around the given axes to respect the desired ratio 𝑟. 
With the constraint equation of a gear ratio joint in mind, we can now proceed to derive the ratio 𝑟 
required to model a hydrostatic transmission. A hydrostatic transmission uses a hydrostatic pump that 
converts the input shaft speed (e.g., the engine’s shaft) into pressured fluid in a pipe. At the input shaft, 
the flow 𝑄ք։, with units of  𝑚ϯ 𝑠⁄ , can be written as 
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 𝑄ք։ = 𝑉ք։ ⋅
𝜔ք։

2𝜋
 (44) 

 
where 𝑉ք։ is the stroked volume in 𝑚ϯ per shaft turn and 𝜔ք։denotes the angular speed of the input 
shaft in 𝑟𝑎𝑑 𝑠⁄ . This equation assumes an ideal pump with 100% efficiency. 
Equation (44) holds also at the output shaft of the transmission where the flow 𝑄֊֐֏ is converted back 
to angular speed: 

 𝑄֊֐֏ = 𝑉֊֐֏ ⋅
𝜔֊֐֏

2𝜋
 (45) 

 
Under the assumption that the pressure is conserved in the pump, we can write 
 

 𝑄ք։ − 𝑄֊֐֏ = 0 

⇔ 𝑉ք։ ⋅
𝜔ք։

2𝜋
− 𝑉֊֐֏ ⋅

𝜔֊֐֏

2𝜋
= 0 

⇔ 𝜔ք։ − (𝑉֊֐֏/𝑉ք։) ⋅ 𝜔֊֐֏ = 0 

(46) 

 
It can be seen that the last row in the equation above corresponds to the constraint equation of the gear 
ratio joint given in equation (43). Therefore, in order to model the hydrostatic transmission using a gear 
ratio joint, the ratio must be set to 𝑟 = 𝑉֊֐֏/𝑉ք։. Note that 𝑟 may be variable for many drive systems. 
The hydrostatic transmission component in the Vehicle Systems module has only one input shaft but can 
have as many output shafts as required. An output shaft can be used to power wheel or track 
components, but can also be employed to power any rigid body, such as the piston rod of a hydraulic 
cylinder actuating an excavator bucket. 
4.2.5.3 Manual Transmission 
The manual transmission component allows the driver to change gears manually. It also detects if the 
driver succeeds in changing gear, and reports this information. 
Most drivers press the clutch to change gears. This is required to successfully start a vehicle in any gear 
except neutral without stalling the vehicle, but it is not mandatory for shifting gears. Advanced drivers 
can shift the gear without pressing the clutch. In a real vehicle the gear shifting is successful if the input 
shaft angular speed of the manual transmission is close to the angular speed of its output. In the Vehicle 
Systems module, as in a real vehicle, the manual transmission “doesn’t know” if the clutch is engaged or 
not. It is purely the mechanical behaviour of the interconnection between the vehicle components 
involved that makes shifting a success or not. In pressing the clutch while shifting gears, the shaft 
between the clutch and the manual transmission is free. This allows the shaft to change speed easily, 
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which facilitates shifting gears. In general, a clutch component allows simulation of the connection 
between two shafts that can be progressively engaged or disengaged. It can therefore also be used 
outside the manual transmission. Also, the maximum torque of the clutch can be parameterised to 
simulate different clutch types. 
 
4.2.6 Differential 
The differential component has one input shaft and two output shafts. It ensures that the following 
equation is always respected:  

 𝑟ք։ ⋅ 𝜔ք։ = 𝑟φ ⋅ 𝜔φ + 𝑟ϵ ⋅ 𝜔ϵ 
 

(47) 
 
where 𝜔ք։,  𝜔φand 𝜔ϵ denote the angular speeds the input shaft and the two output shafts respectively, 
and 𝑟ք։, 𝑟φ and 𝑟ϵ are the desired corresponding speed factors. 
In order to simulate an open differential, the factors are set to 𝑟ք։ = 1, 𝑟φ = −0.5 and 𝑟ϵ = −0.5 such 
that the speed at the input shaft is equally distributed to the two output shafts. 
For a locking differential, an additional gear ratio joint is added which locks the two output shafts to an 
identical speed by using a ratio of 𝑟 = −1 in the gear ratio constraint equation given in equation (43) 
Finally, a maximum torque can be specified in the gear ratio, which models the locking differential using 
the concept of Lagrange multiplier limits introduced in the Friction section of this guide. This simulates a 
limited slip differential, which allows one wheel to spin slower than the other if a sufficiently high 
external load is applied on it. This can be caused by friction forces acting between the wheel and the 
ground.  
 
4.2.7 Steering Systems 
The Vehicle Systems module offers several steering modes that can be selected by the driver in an 
ongoing simulation. The different systems are presented in this section. 
4.2.7.1 Ackermann steering 
The Ackermann steering model makes sure all wheels follow the vehicle’s trajectory while turning. In 
other words, they all turn around a common point 𝑂 shown in Figure 16. This avoids excessive lateral 
friction forces that could damage the tire or lead to instabilities while turning. 
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Figure 16. Ackermann: A left turn in the Ackermann steering model. 

 
The Ackermann steering component has a normalised steering input 𝑠 in [−1,1], which is used to 
compute the desired steering angle 𝛼, from the maximum steering angle 𝛼ֈռ֓ as 

 𝛼 = 𝑠 ⋅ 𝛼ֈռ֓ 
 

(48) 
 
The steering angle 𝛿ք of the 𝑖th wheel is computed from its local longitudinal coordinate 𝑙ք, and its lateral 
coordinate 𝑤ք, shown in Figure 16 using the expression 

 
𝛿ք = atan (

𝑙ք
𝑊 + 𝑤ք

) 
 

(49) 

 
with 𝑊 = 𝑙ք tan (𝛼)⁄ . 
4.2.7.2 Pivot and Crab steering  
The pivot steering mode allows the vehicle to turn around a fixed pivot point by setting the angle of 
wheel 𝑖 with local coordinates given by 𝑙ք and 𝑤ք, depicted on the left side of Figure 17, to 𝛿ք =

 

𝑊  
𝑤0 

𝑙0 

𝑂 

 

 𝛼
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atan५ ևՎ
֒Վ

६. In crab steering mode, all wheels are set to the same angle 𝛿 as shown on the right side of 
Figure 17.  

 
Figure 17. Illustrations of pivot (left) and crab (right) steering mode. 

 
4.2.8 Wheels and Suspension 
The Vehicle Systems module allows configuring a vehicle with any number of wheels. Their point of 
attachment can be anywhere relative to the chassis. By default, wheels are attached directly to the 
vehicle chassis using the car wheel joint for wheeled vehicles and the double hinge joint for vehicles 
with flexible tracks. These joints are natively provided by the Vortex Software multibody dynamics 
engine. Both can constrain all six relative degrees of freedom (DOF) between a wheel and the chassis.  
It should be noted that apart from the built-in suspension types presented in this section, custom 
suspensions are supported in Vehicle Systems. A wide variety of suspension systems can be modeled 
simply by using additional rigid bodies and joints, and instead of attaching the wheels directly to the 
vehicle chassis, connecting them to an intermediate chassis component which could represent a hub 
carrier or a bogie. 
The car wheel joint, which represents a simplified, idealised suspension system, is shown on the left in 
Figure 18. Its controllable coordinates are rotation about the wheel’s rotation axis, a displacement along 
the suspension axis and a rotation about the steering axis. Depending on the powertrain topology, the 
wheel’s rotating axis can be free or driven by the powertrain. The suspension coordinate is locked at a 
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given position, and the corresponding constraint equation is relaxed to obtain characteristics of a spring-
damper, by using the technique described in the Stabilisation and Relaxation section of this guide. The 
stiffness and damping coefficient can be chosen according to the characteristics of the suspension in the 
real vehicle. By default, the steering coordinate is driven by the Ackermann steering component 
presented in the last section, but it can be replaced by any other control logic. 

 
Figure 18. Suspension joints: Joints representing the built-in suspension types in the Vehicle Systems module. Left: Car wheel joint with linear suspension coordinate. Right: Double hinge joint with angular suspension coordinate. 
 
The controllable coordinates of the double hinge joint, shown on the right in Figure 18, are a rotation 
about the wheel’s rotation axis, a rotation about the suspension axis and the distance between the 
joint’s attachment point on the chassis and the wheel center. When modeling a flexible track, the wheel 
rotation axis is free, as its rotation is driven by the track’s movement. The suspension coordinate is 
locked at a given angle and, as in the case of the car wheel joint, the corresponding constraint equation 
is relaxed to obtain visco-elastic characteristics. The stiffness and damping coefficients are chosen 
according to the torsion bar suspension of the real vehicle. The distance coordinate is locked without 
any relaxation of the constraint equation in order to model a rigid suspension lever. 
 

4.3 Wheel-Ground Interaction 
During simulation, the interaction between a wheel and the ground is modeled in Vortex Software using 
one of several approaches, depending on the nature of the interaction. The Vehicle Systems module 
provides a rich set of wheel-ground interaction models, referred to as tire models, which can be divided 
into two categories: Hard ground and soft ground tire models. 
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For example, soft ground tire models account for increases in rolling resistance and non-linear changes 
in friction forces as the wheel sinks into soft ground, as shown in Figure 19. Furthermore, the effects of 
tire pressure are considered by both hard and soft ground tire models. 
The theoretical basis of the employed tire models has been developed over several decades in the fields 
of terramechanics and vehicle dynamics, and the models have been verified in extensive field 
experiments [18]. Vortex Software integrates such models, which for the most part are based on 
constitutive equations, into the constrained-based modeling framework presented in the Multibody 
Dynamics Simulation section of this guide, and thus makes them available in a real-time, dynamics 
simulation context. For technical details on the integration and the modeling approach, see [19]. 

 
Figure 19. Left: Soil reaction forces and torques applied to a rigid wheel moving over soft soil. Right: Normal stress distribution (illustrated in green) assumed by the Wong-Reece model. Reproduced with permission from authors of [19]. 

 
4.3.1.1 Hard Ground 
Hard ground tire models compute the friction force bounds and alignment moment that arise at the 
wheel/ground interface on hard ground, and thus capture the non-linearity in longitudinal and lateral 
friction. Hard ground tire models supported in Vortex Software are the magic formula [20], Fiala [21], 
and composite slip [22] models. 
4.3.1.2 Soft Ground 
Soft ground tire models capture the non-linear friction behaviour and rolling resistance resulting from 
wheels sinking into the ground, in order to produce the correct drawbar pull of the vehicle. These 
models can be categorised according to the specific constitutive equations they use to relate the stress 
and strain acting in the ground. Two classes of stress-strain relations are defined, which depend on the 
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direction of the stress applied in the ground, i.e., normal or tangential to the wheel surface. As such, two 
different classes of constitutive equations exist, one describing the normal stress-strain relation 
(pressure-sinkage relation) and the other describing the shear stress-strain relation (shearing relation) 
[23] [24]. The supported pressure-sinkage relations in Vortex are Bekker, Bekker-Wong, Reece, muskeg, 
and snow. The supported shearing relations are Wong, exponential and hump [18]. An example of the 
normal stress distribution assumed in a soft ground tire model is shown in Figure 19. 
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5 EARTHWORK SYSTEMS 
The Vortex Earthwork Systems module is tailored to the needs of high-fidelity, real-time earth-moving 
simulations, and employs physically-based soil deformation algorithms. Terrain deformations, caused by 
earth-moving tools such as buckets and blades, and the corresponding terrain reaction forces, are 
captured in real time and full two-way force coupling with other simulation entities is modeled. The 
interactions between machine and soil are fully simulated, allowing soil to be cut, compressed and 
spilled, all inside an interactive environment.  
  

5.1 Simulation Method 
For the interaction of tool and ground, the Earthwork Systems module employs a hybrid particle-based 
and mesh-based soil simulation method originally presented in [25] and [26] and later extended by 
incorporating soil reaction forces acting on cutting tools (computed based on a validated semi-empirical 
model [27]). The system adaptively switches between particle and mesh representations of soil based 
on the simulation context, which makes the method very efficient. This approach is motivated by the 
occurrence of soil in nature: In equilibrium and undisturbed by outer forces, it remains in a static state, 
not showing any movement, while once exposed to a sufficiently high stress, soil shows high plasticity. 
Thus, highly dynamic phenomena can be simulated in an efficient way. The method combines a 
volumetric grid representation of soil at equilibrium with a discrete element method (DEM) particle 
simulation to model soil in motion. The grid representation is based on a height field combined with a 
layered data structure of rectangular soil columns shown in Figure 20. 

  
Figure 20. Left: Height field-based soil grid. Model of a continuous soil body as 2-dimensional array of rectangular soil columns (blue) and its visualisation (green). Right: Representation of soil columns as linked lists of soil layers. To store the soil's 
compaction degree in the soil grid each entry consists of a height and a void ratio value (𝒉, 𝒆). 
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5.1.1 Soil Cutting Forces 
In this hybrid setting, the reaction force applied to cutting tools is based on two combined models. First, 
when horizontal motions of a tool are detected in the grid, such as a blade carving through the ground, 
DEM particles are introduced adaptively, replacing portions of the grid in the vicinity of the tool, as 
shown in Figure 21. These particles represent the excavated and disturbed soil and form the surcharge 
material, which is accumulated in or in front of the tool. Forces between particles and tool are 
exchanged through two-way force coupling. This way, the reaction force applied to the blade correctly 
increases with increasing surcharge. 
 

Figure 21. Parallel particles (P2) simulation results. Left: Loosely poured, stable pile of soil particles with compactness visualisation (green for low and blue for high compaction degree). Right: Different realistic angles of repose achieved with 
varying kinetic friction angle 𝝁ۨ and adhesion 𝒂. I: 𝝁ۨ = 𝟓, 𝒂 = 𝟎 Pa. II: 𝝁ۨ = 𝟑𝟎, 𝒂 = 𝟎 Pa. III: 𝝁ۨ = 𝟓, 𝒂 = 𝟏𝟎𝟎𝟎 Pa 
 
The DEM method is based on Parallel Particles (P2), a technique for the simulation of granular materials 
that was developed especially for the purpose of real-time simulation of soil-cutting operations in high 
detail [28]. A parallel solver leads to very high simulation speeds. The method uses intuitive physical 
contact properties such as stiffness, damping and friction coefficients, and leads to physically plausible 
simulation results, such as stable soil piles with realistic angles of repose for various material types (see 
Figure 21). 
Secondly, the portion of the terrain in front of the tool that has not yet undergone failure (represented 
in the grid) requires the tool to apply a certain minimum force in order to fail, which subsequently leads 
to soil displacement. This force is computed via a semi-empirical model and must be overcome by the 
tool in order to progress. A detailed contact analysis between tool and grid is performed to detect if the 
tool is displacing soil, in which case a corresponding part of the grid is replaced by particles.  
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Figure 22. Fundamental earth-moving equation (FEE) cutting force model (left) with geometric and physical input parameters in combination with adaptive height field deformation algorithm (right). The height field vertices (blue/green dots) serve as input 
for the soil slope approximation (L). The blade motion 𝚫𝒙 causes height field deformation 𝚫𝒛 and particle generation (green circles). Particles from previous simulation steps (disturbed soil) are depicted as blue circles. Tool needs to overcome soil 
reaction force 𝑭  in order to progress and cause soil deformation (𝚫𝒛) and generation of particles (green circles). 

 
This process is shown in Figure 22. No soil displacement is allowed if the tool does not apply sufficient 
force. The force required for soil failure to occur is computed through a formulation obtained via the 
fundamental earth-moving equation (FEE) of Reece [29] and the method of trial wedges presented by 
McKyes [30]. 
As shown in Figure 22, the soil reaction forces computed via the FEE formulation depend on various 
geometric parameters such as the tool’s angle to the ground \rho or the tool’s penetration depth d, and 
on the soil’s shear strength parameters internal friction angle \phi and cohesion c, which are readily 
obtained from the grid. The soil volume in front of the tool is discretised in multiple slices as explained in 
[27] , and for each slice the required geometric parameters are computed through a tool/grid contact 
analysis. In this discretisation approach, each slice leads to a separate reaction force, which has the 
effect that plausible reaction forces are calculated regardless of the soil’s surface shape and inclination 
in front of the tool. All forces are integrated and added to the tool via a 6-DOF constraint (see the 
Constraints section of this guide). 
In reality, the surcharge material that accumulates in front of a cutting tool means that it is harder for 
the unfailed soil in front of the tool harder to fail, i.e., higher tool forces are required for soil failure to 
occur. This effect is also captured in the simulation, by feeding forces from the surcharge particles back 
into the surcharge force parameter Q of the FEE model. This procedure is depicted in Figure 23. The soil 
reaction force is further increased by the accumulation of surcharge particles, which themselves apply 
contact forces to the tool. Consequently, during simulation, a bulldozer can correctly become stalled, if, 
with increasing surcharge, the total soil reaction force overcomes the bulldozer’s traction force. 
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Figure 23. Left: Soil in front of tool is discretised into several soil slices, each contributing its own soil reaction force. Right: 
Surcharge force 𝑸 caused by soil particles traveling on soil wedge further increases the soil reaction force of the undisturbed soil in front of the tool. 
 
Formulating the soil-cutting force based on the FEE is motivated by the fact that (i) it is a 2D model, 
which makes it easy to apply and computationally efficient, and (ii) it has a reasonable range of 
operations appropriate for the simulation of several soil-cutting tools. As mentioned by Shen and 
Kushwaha [31], this equation is approximately valid for tools that have a sufficiently high width-to-depth 
ratio. This allows us to use the FEE formulation for wide tools, such as bulldozer blades and wheel loader 
buckets. Narrow tools, by contrast, not only induce horizontal and vertical soil movement, but also 
movement to the sides, in direction of the tool width. In this case, the FEE is not valid anymore. 
However any tool with side walls can be simulated by the FEE reasonably well since the side walls 
restrict sideward motion of the soil. This justifies application of the FEE model to buckets of earth-
moving excavators and backhoes. 
 
5.1.2 Shear Strength and Compressibility 
Soil models are parameterised using internal friction angle and cohesion, which are established shear 
strength parameters from the field of soil mechanics. Since shear strength can change with compactness 
[32], the soil’s compression state is tracked throughout the simulation. A compaction model is used to 
simulate elasto-plastic deformations that occur in the grid due to vertical stresses applied to the 
medium by cutting tools. In this model, the volume change of soil due to compaction — the stress-strain 
relationship — is described by an empirical model from the field of critical state soil mechanics [33]. 
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Figure 24. Soil compaction profile inside an earthwork zone. Blue denotes a high degree of compaction, while green denotes a low degree of compaction. 
 
As a result of compaction, the shear strength parameters in the grid change locally in the vicinity of the 
interaction, which, depending on the soil type, makes the soil harder to fail and compact at this location 
[32]. In this way, the history of earth-moving operations is considered during the simulation. This greatly 
increases realism compared to methods that treat soil as homogeneous. For example, during trenching, 
soil can initially be in a compacted state, and therefore relatively high cutting forces must be applied for 
it to fail. Once the soil is excavated, it can loosen up, leading to reduced compactness and thus shear 
strength. When it is piled up beside the trench, in our method this information is kept and stored in the 
grid as shown on in Figure 24. Consequently, during backfilling, a lower cutting force is required to move 
the excavated soil back into the trench. 
Apart from the cutting forces, the shear strength parameters also define at which surface angles soil 
starts to slip. We perform a stability analysis in the grid based on the Mohr-Coulomb failure criterion, 
which models the resistance of soil to shear stress. Once failure occurs, slip is modeled by computing 
soil restoring forces and from those integrating flow velocities on the grid. The stability analysis and the 
Mohr-Coulomb criterion are briefly depicted in Figure 25. More details can be found in [25] and [26]. 
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Figure 25. Left: Soil stability analysis in the discrete soil grid. Soil with weight force 𝑾  fails along failure line 𝑳 at angle 𝜶 to 
horizon, which is the angle where shear strength force 𝒔஥equals shear stress force 𝝉 ஥. Right: Mohr-Coulomb criterion: yield line 
with slope 𝐭𝐚𝐧(𝝓) and intercept 𝒄 for internal friction angle 𝝓 and cohesion 𝒄 describing the linear relationship between shear 
strength 𝒔 (resisting an applied shear stress 𝝉 ) and normal stress 𝝉 . 
 

5.2 Simulation Results 
To date, earth-moving simulations performed using the Earthwork Systems module have proven 
satisfactory in several areas and have been validated by actual operators [27]. As a consequence of the 
physically-based modeling approach, the applied method captures emerging behaviour of soil naturally, 
as opposed to approaches based only on animation. Simulations have given physically plausible results, 
running at interactive–to–real-time rates. The experiments showed several emerging effects, such as a 
bulldozer’s travel speed and trajectory being affected with increase in cutting force (see Figure 26). 
These effects are hard or impossible to capture accurately without the use of physical models. 
Simulation results can be found in [34] and [35]. 
 

 
Figure 26. Experiment: Simulation of vehicle with mounted bulldozer blade driving into a concentric pile of soil. Left: Trajectories of the vehicle from three simulation runs with varying blade lengths ranging from short to long. Height of pile indicated with iso-lines. Right: Blade cutting forces applied by FEE model with long and short blade. More details in [34] and [35]. 



 Theory Guide: Vortex Software’s Multibody Dynamics Engine 

  
. . 
. 

. 

. . 
 

56 
 

6 FLUID INTERACTION 
Vortex Software supports the real-time simulation of dynamic rigid bodies immersed in fluid, and 
simulates several hydrodynamics effects that are a result of the interaction between the rigid body and 
the surrounding fluid. It should be noted that the fluid simulation capabilities offered by Vortex 
Software do not provide the same level of physical accuracy as complex computational fluid dynamics 
(CFD) methods.  
Instead, approximate fluid forces are computed using computationally efficient methods, which makes 
the approach well-suited for use in real-time, immersive simulation environments. 
A fluid in Vortex Software is represented by a surface, such as a plane, a height field or a general mesh. 
A rigid body that is overlapping with or fully below the fluid surface will be subject to hydrodynamics 
forces explained in the following sections. 
Buoyancy, drag and lift are simulated based on constitutive equations, and their effect is added to the 
submerged rigid body as generalised forces, i.e., forces and torques. This process is shown in Figure 27. 
The computed generalised forces are incorporated into the Vortex Software multibody dynamics 
formulation through the 𝐠 term in equation (4), given in the Multibody Dynamics Simulation section of 
this guide. 
Fluid forces are calculated according to the shapes of the collision geometries attached to the rigid body, 
their immersed portions in the fluid, and the velocity of the fluid relative to the body’s surface. Vortex 
Software offers fluid interaction with various geometric primitives (boxes, spheres, capsules, cylinders), 
as well as convex and general meshes.  
For general meshes, fluid forces are computed through an integration process over all surface triangles. 
Consequently, with higher mesh resolution, the computed fluid forces are more accurate, while the 
computational cost is higher. 
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Figure 27. Fluid dynamics simulation: Information flow in Vortex Software fluid dynamics simulation 

 
Contrary to the fluid dynamics effects listed above, the added mass effect is not modeled as a 
generalised force but incorporated into the rigid body mass matrix. More details on the methods used 
to simulate the mentioned hydrodynamics effects are provided in the following sections. 
 

6.1 Buoyancy 
Buoyancy produces an upward force opposing the weight force of the immersed rigid body. The 
buoyancy force vector 𝐛, acts through the center of the submerged volume and can be computed using 
the following constitutive equation: 
 

 𝐛 = −𝜌𝑉𝐠  
(50) 

 
Here, ߩ denotes the fluid’s density, ܸ is the volume of the immersed portion of the rigid body, and the 
vector ܏ corresponds to the gravity force. This scenario is shown in Figure 28. 

Fluid interaction computation: 
Buoyancy, drag, lift forces 

Apply forces Gravity Rigid body: Velocity, shape information 

Fluid surface Fluid velocity 
Fluid geometry 

Fluid parameters, e.g., 
drag coefficient 

Dynamics engine: Rigid body simulation in vacuum Fluid data for 
each CG 
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Figure 28. Buoyancy force applied at center of immersed volume opposing weight force. 

 
If the rigid body is above the liquid surface, no forces are generated since the submerged volume drops 
to zero; if it is fully submerged, the entire volume of its geometry is used to compute the buoyancy 
force. Otherwise, if the rigid body overlaps the fluid surface, the exact submerged volume and its center 
is computed. Note that the volume computation produces best results when using a general mesh for 
the representation of the rigid body’s shape. 
 
 

6.2 Drag 
Drag yields a force opposite to the relative surface velocity of a rigid body inside a fluid. For a given 
surface element, such as the triangle of a general mesh, the drag force vector 𝐝 can be computed using 
the following constitutive equation:  
 

 
𝐝 = −

1

2
𝜌𝑑𝐴‖𝐯‖ϵ 𝐯

‖𝐯‖
 

 
(51) 

 
In the above expression, 𝑑 denotes the drag coefficient, 𝜌 is the fluid’s density, ܞ is the local surface 
velocity of the rigid body relative to the fluid, and 𝐴 represents the cross section area of the surface 
element perpendicular to the relative velocity vector 𝐯. This situation is depicted in Figure 29. 

Buoyancy force 

Weight force 
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Figure 29. Drag forces applied to a rigid body moving in a fluid with a given relative velocity. The drag force is opposite to the relative velocity at the respective surface patch and is proportional to the surface’s cross section area perpendicular to the relative velocity. 
 
If a mesh is used to represent the rigid body's shape in interaction with the fluid, a drag force is 
computed for every submerged surface triangle, and the resultant forces are integrated. For reasons of 
numerical accuracy, it is recommended to use a mesh with close to equilateral triangles for best results. 
Note that both the linear and the angular velocity of the rigid body are accounted for by computing a 
relative linear velocity for every surface triangle individually. 
 

6.3 Lift 
Similar to drag, lift produces a force proportional to the relative velocity of the rigid body to the fluid. As 
opposed to drag, lift acts perpendicular to the relative velocity at the respective surface patch. 
Accordingly, the lift force 𝐥 can be computed using the following constitutive equation: 
 

 
𝐥 = −

1

2
𝜌𝑙𝐴‖𝐯‖ϵ  

𝐯

‖𝐯‖
× (

𝐧

‖𝐧‖
×

𝐯

‖𝐯‖
) 

 
(52) 

 
Here, 𝑙 denotes the lift coefficient, 𝜌 is the fluid’s density, ܞ represents the velocity of the rigid body at 
the surface patch relative to the fluid, 𝐧 defines the normal of the surface patch, and 𝐴 is the cross 
section area of the surface patch perpendicular to the relative velocity vector 𝐯. This situation is 
depicted in Figure 30. 

Drag force Relative velocity 
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Figure 30. Lift forces applied to surface elements of a rigid body moving in fluid. The lift force is perpendicular to the relative velocity at the respective surface patch. 
 
As can be seen in the expression above, the lift force applied at a given surface patch is computed using 
a double cross-product between the surface normal and the relative velocity. Consequently, if the 
surface normal is collinear or perpendicular to the relative velocity, no lift is produced. 
 
Analogously to the computation of drag forces, in order to obtain lift forces with the highest possible 
physical accuracy, a general mesh with close to equilateral triangles should be used to represent the 
immersed body. 
 

6.4 Added Mass 
Added mass is the inertia added to an immersed rigid body due to the surrounding fluid. Intuitively, if 
the rigid body is accelerating or decelerating it has to move a portion of the surrounding fluid. As a 
result, the acceleration of the body is affected. 
The added mass effect can be considered as a force which is proportional to the rigid body’s 
acceleration. However, simulating the added mass by applying generalised forces, as done for the other 
hydrodynamics effects described above, tends to be a source of instability. The instability results from 
the fact that the applied forces have a feedback effect on the body’s acceleration which is used to 
compute the forces in the first place. Depending on the size of the simulation time step, this approach 
can lead to the computation of very approximate, excessive forces, which can make the system blow up. 
Instead, for improved stability, Vortex models the added mass effect as a modification of the 
generalised mass matrix of the rigid body (see equation (3) in the Multibody Dynamics Simulation 
section of this guide). This approach is motivated by the work of Weißmann and Pinkall [36], which 
proposes a stable simulation approach for underwater rigid body dynamics.  

Lift 
force Relative velocity 

Surface normal 
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For this purpose, we define the 6 × 6 Kirchhoff tensor 𝐊ք of the 𝑖th rigid body as the sum of the 
generalised mass matrix 𝐌ք and the added mass tensor 𝐊էӴք, where the subscript 𝐹  stands for fluid. It 
is defined as 

 𝐊ք = 𝐌ք + 𝐊էӴք  
(53) 

 
The added mass is considered in the simulation by replacing the generalised mass matrix 𝐌ք of the 𝑖’th 
rigid body in equation (3) (see the Multibody Dynamics Simulation section of this guide) by the Kirchhoff 
tensor 𝐊ք. This way, the added mass effect is made part of the multibody dynamics formulation and 
integrates naturally with the constraint-based modeling approach.  
Taking a closer look at a single rigid body and using the definition of the Kirchhoff tensor 𝐊ք in equation 
(53), we write the updated equations of motion for rigid body 𝑖 as 
 

 𝐊ք�̇�ք = ि𝐌ք + 𝐊էӴքी�̇�ք = 𝐠ք  (54) 
 
where 𝐠ք contains the net generalised forces and gyroscopic terms for the 𝑖th rigid body, and �̇�ք denotes 
the body’s generalised acceleration vector, which assembles the 3 × 1 linear and angular accelerations, 
�̇� and �̇�, in a single vector: 

 �̇�ք
յ = [�̇�յ �̇�յ ] (55) 

 
In order to get the desired added mass effect from the surrounding fluid, an appropriate added mass 
tensor 𝐊էӴք must be computed in every simulation step and updated in equation (54). The added mass 
tensor depends among other things on the submerged volume. When the submerged volume drops to 
zero as the rigid body leaves the fluid, so does the added mass matrix. Consequently, the added mass 
effect vanishes as expected. Here, we omit the details of how to compute appropriate added mass 
tensors and refer you to [36]. 
To understand why the added mass tensor is suitable for modeling the added mass effect of the fluid, 
we will take a closer look at its shape. The added mass tensor 𝐊էӴք is symmetric and has the following 
form:  
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𝐊էӴք  = ই

𝐋 𝐏
𝐏յ 𝐀

ঈ =

⎣

⎢
⎢
⎢
⎢
⎡

𝑙φφ 𝑙φϵ 𝑙φϯ 𝑝φφ 𝑝φϵ 𝑝φϯ

𝑙φϵ 𝑙ϵϵ 𝑙ϵϯ 𝑝ϵφ 𝑝ϵϵ 𝑝ϵϯ

𝑙φϯ 𝑙ϵϯ 𝑙ϯϯ 𝑝ϯφ 𝑝ϯϵ 𝑝ϯϯ

𝑝φφ 𝑝ϵφ 𝑝ϯφ 𝑎φφ 𝑎φϵ 𝑎φϯ

𝑝φϵ 𝑝ϵϵ 𝑝ϯϵ 𝑎φϵ 𝑎ϵϵ 𝑎ϵϯ

𝑝φϯ 𝑝ϵϯ 𝑝ϯϯ 𝑎φϯ 𝑎ϵϯ 𝑎ϯϯ⎦

⎥
⎥
⎥
⎥
⎤

 
(56) 

 
Since the added mass tensor is added to the generalised mass matrix, as shown above, it directly affects 
the inertial forces of the rigid body on the left-hand side of equation (54). 
With this observation, and considering equations (54) and (55), it becomes clear that the tensor 𝐊էӴք 
creates coupling effects between different components of the rigid body’s generalised acceleration 
vector �̇�ք. Depending on which terms are non-zero in 𝐊էӴք, specific components of the rigid body’s 
acceleration are affected. As such, the sub-matrix 𝐋 couples the linear acceleration terms, the sub-
matrix 𝐀 couples the angular acceleration terms, and the sub-matrix 𝐏 couples the linear with the 
angular acceleration terms. 
As described at the beginning of this section, the added mass of the fluid surrounding the rigid body has 
a very similar coupling effect on the body’s acceleration. Consequently, by choosing the terms in the 
added mass tensor appropriately, the added mass effect of the fluid can be modeled with the proposed 
approach. For a detailed discussion, see [36]. 
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